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Prior Assumptions
Given a set of paired data (x1, y1), . . . , (xn, yn), we often assume that the expected
value of y is a function of x:

yi = µ(xi) + εi, i = 1, . . . , n,

for some unknown function f . The εi’s are assumed to have mean zero.

I In parametric models (e.g. linear regressions), we assume that µ belongs to a
parametric family, e.g. µ(x) = β0 + β1x. A prior is often placed on the
parameters β0 and β1.

I In state-space models, the prior is placed on the state variables (x1, . . . , xn)
through a transition model.

p(x1, . . . , xn) = p(x1)
n∏
i=2

p(xi|xi−1).

I In this lecture, we will discuss nonparametric models, where the prior is placed
directly on the function µ within a function space.
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Gaussian Process

I A stochastic process is a collection of random variables indexed by some set,
e.g. time or space.
I Random walk: r.v.s. indexed by time.
I Brownian motion: r.v.s. indexed by time.
I Random field: r.v.s. indexed by space.

I A Gaussian process is a stochastic process such that any finite collection of r.v.s.
has a multivariate normal distribution.

I Specifically, if {µ(x) : x ∈ X} is a Gaussian process, then for any finite set of
indices x1, . . . , xn ∈ X , the random vector (µ(x1), . . . , µ(xn)) has a multivariate
normal distribution.

I As a special case, for any x ∈ X , µ(x) is a normal random variable.
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Gaussian Process

I A Gaussian process is completely specified by its mean function m(x) = E[µ(x)]
and covariance function k(x, x′) = Cov(µ(x), µ(x′)).

I The process is denoted by µ(x) ∼ GP(m, k).

I The joint distribution of µ(x1), . . . , µ(xn) is given byµ(x1)
...

µ(xn)

 ∼ N

m(x1)

...
m(xn)

 ,K(x1, . . . , xn)

 .

where K(x1, . . . , xn) is the covariance matrix with (i, j)-th element k(xi, xj).

I Consistent defintion: the distribution of µ(x1), . . . , µ(xm) derived from the joint
distribution of µ(x1), . . . , µ(xn) is the same for any choice of xm+1, . . . , xn.

I K(x1, . . . , xn) is positive definite for any choice of x1, . . . , xn.
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Gaussian Process — Covariance
A common choice for k(x, x′) is

k(x, x′) = τ2 exp

(
−|x− x

′|2

2l2

)
,

Show that the covariance matrix K(x1, . . . , xn) is positive definite.

WLOG, we assume τ2 = l2 = 1. To show K is positive definite, we need to show that
for any vector u = (u1, . . . , un), uTKu ≥ 0.
I Notice that

k(xi, xj) = exp

(
−1

2
|xi − xj |2

)
= E

[
ei|xi−xj |Z

]
for Z ∼ N (0, 1).

I Therefore,

uTKu =
∑
i,j

uiujk(xi, xj) =
∑
i,j

uiujE
[
ei|xi−xj |Z

]
= E

(∑
i

uie
ixiZ

)2
 ≥ 0.
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Gaussian Process — Basis Functions

The Gaussian Process can also be constructed by basis functions:

µ(x) =

H∑
h=1

βhbh(x), β = (β1, . . . , βH) ∼ N (β0,Σβ)

Then µ is a Gaussian process with

m(x) = b(x)Tβ0, k(x, x′) = b(x)TΣβb(x
′).
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Gaussian Process — Inference
Suppose, we have observed the data (x1, y1), . . . , (xn, yn), and we assume that

yi = µ(xi) + εi, εi ∼ N (0, σ2).

Given a new point x̃, we want to estimate the expected value of y at x̃, i.e. µ(x̃).

I We assume that µ is a Gaussian process with mean function m(x) = 0 and
covariance function k(x, x′) = τ2 exp

(
−|x− x′|2/(2l2)

)
.

I The joint distribution of y = (y1, . . . , yn) and µ(x̃) is given by(
y

µ(x̃)

)
∼ N

((
0
0

)
,

(
K(x, x) + σ2I K(x, x̃)

K(x̃, x) K(x̃, x̃)

))
.

I With the properties of conditional distribution of multivariate normal, we can
derive the posterior distribution of µ(x̃) given y.

µ(x̃) | x, y, τ2, σ2, l2

∼ N
(
K(x̃, x)(K(x, x) + σ2I)−1y,K(x̃, x̃)−K(x̃, x)(K(x, x) + σ2I)−1K(x, x̃)

)
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Gaussian Process — Example



Gaussian Process — Inference

For a Bayesian procedure, we need to specify the prior distributions for the
hyperparameters τ2, σ2, and l2.

A common choice is

p(log τ) ∝ 1, p(log σ) ∝ 1, p(log l) ∝ 1.

The log-likelihood is

log p(y | x, τ2, σ2, l2) = −1

2
yT (K(x, x) +σ2I)−1y− 1

2
log |K(x, x) +σ2I|− n

2
log(2π).

The posterior is now straightforward.
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Example — Birth Dates

In this example, we analyze the patterns of birthdays in the United States. The data is
the number of births on each day of the year from 1969 to 1988.

I This is a time series data, where the index is the number of days from 1969-01-01.

I The series contains periodic patterns, e.g. yearly and weekly patterns.

I The series also contains long term trends.



Example — Birth Dates

We model the time series as an additive model:

y(t) = f1(t) + f2(t) + f3(t) + f4(t) + f5(t) + εt,

I Long-term trend:

f1(t) ∼ GP(0, k1), k1(t, t
′) = σ21 exp

(
−|t− t

′|2

2l21

)
I Short-term trend:

f2(t) ∼ GP(0, k2), k2(t, t
′) = σ22 exp

(
−|t− t

′|2

2l22

)



Example — Birth Dates

We model the time series as an additive model:

y(t) = f1(t) + f2(t) + f3(t) + f4(t) + f5(t) + εt,

I Weekly pattern:

f3(t) ∼ GP(0, k3), k3(t, t
′) = σ23 exp

(
−2 sin2(π(t− t′)/7)

l23,1

)
exp

(
−|t− t

′|2

2l23,2

)
I Yearly pattern:

f4(t) ∼ GP(0, k4), k4(t, t
′) = σ24 exp

(
−2 sin2(π(t− t′)/365.25)

l24,1

)
exp

(
−|t− t

′|2

2l24,2

)



Example — Birth Dates

We model the time series as an additive model:

y(t) = f1(t) + f2(t) + f3(t) + f4(t) + f5(t) + εt,

I Special days and its interaction with weekends:

f5(t) = Is.d.(t)βa + Is.d.(t)Iw.e.(t)βb

where Is.d.(t) is an indicator function for special days (13 holidays), and Iw.e.(t) is
an indicator function for weekends.

I εt ∼ N (0, σ2) is the residual.



Example — Birth Dates

I Sum of Gaussian processes is still a Gaussian process.

I The model can be fit through a standard GP inference.

I log-t prior for time scales l.

I log-unifom prior for other parameters.

I The model can be further extended by considering weekdays v.s. weekends. See
textbook Ch. 21.2.
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Dirichlet Process

I The Gaussian process gives a prior on the function space.

I A special type of the function space is the distribution space — all nonnegative
integrable functions with integral 1.

I In defining Gaussian process, we considered the joint distribution of the function
values at any finite number of points.

I For the distribution space, we consider probabilites of any finite partitions of the
sample space.
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Dirichlet Process

Consider a finite partition of the sample space:

Ω = B1 ∪B2 ∪ · · · ∪Bk, and Bi ∩Bj = ∅ ∀ i 6= j

Let P be a probaility measure on Ω with density function f . The probability measures
of the partitions are

(P (B1), . . . , P (Bk)) =

(∫
B1

f(y)dy, . . . ,

∫
Bk

f(y)dy

)
with

k∑
i=1

P (Bi) = 1.
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Dirichlet Process

A natural probability measure on (P (B1), . . . , P (Bk)) is the Dirichlet distribution:

(P (B1), . . . , P (Bk)) ∼ Dirichlet (αP0(B1), . . . , αP0(Bk))

where P0 is some baseline measure on Ω.

Now we assume P is a random measure, and the distribution of P is the Dirichlet
process, denoted by DP(αP0) if:

for any finite partition B1, . . . , Bk of Ω, the probability measures (P (B1), . . . , P (Bk))
follows the Dirichlet distribution with parameters (αP0(B1), . . . , αP0(Bk)).
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Dirichlet Process
To check the consistency of the defition of a Dirichlet process, consider two partitions
B1, . . . , Bk and B′1, . . . , B

′
k−1 with

Bi = B′i for 1 ≤ i ≤ k − 2, and B′k−1 = Bk−1 ∪Bk

I On the one hand, the distribution of (P (B1), . . . , P (Bk)) is Dirichlet with
parameters (αP0(B1), . . . , αP0(Bk)). Therefore, the distribution of
(P (B1)

′, . . . , P (B′k−1)) is Dirichlet with parameters

(αP0(B1), . . . , αP0(Bk−2), αP0(B
′
k−1) + αP0(B

′
k)).

I On the other hand, the distribution of (P (B1)
′, . . . , P (B′k−1)) is Dirichlet with

parameters
(αP0(B

′
1), . . . , αP0(B

′
k−2), αP0(B

′
k−1)).

I They are equal because

Bi = B′i for 1 ≤ i ≤ k − 2, and P0(B
′
k−1) = P0(Bk−1) + P0(Bk)
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Dirichlet Process

Let B be a measurable subset of Ω. Then its probability measure follows a Dirichlet
process:

(P (B), P (Ω \B)) ∼ Dirichlet(αP0(B), α(1−P0(B))) ∼ Beta(αP0(B), α(1−P0(B)))

Therefore, the expectation of P (B) is

E[P (B)] =
αP0(B)

αP0(B) + α(1− P0(B))
= P0(B)

and the variance is

V ar[P (B)] =
αP0(B)α(1− P0(B))

(αP0(B) + α(1− P0(B))2)(αP0(B) + α(1− P0(B)))
=
P0(B)(1− P0(B))

α+ 1

Therefore, in the Dirichlet process, P0 controls the mean measure and α controls the
variance.
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Dirichlet Process — Inference

Now suppose we observed y1, . . . , yn from some unknown distribution P .

I We choose the prior for P to be a Dirichlet process DP(αP0).

I For any finite partition B1, . . . , Bk of Ω, the prior distribution of
(P (B1), . . . , P (Bk)) is Dirichlet with parameters (αP0(B1), . . . , αP0(Bk)).

I The likelihood of y given P is

p(y | P (B1), . . . , P (Bk)) =

k∏
j=1

[P (Bj)]
∑n

i=1 I{yi∈Bj}

I The posterior distribution of P (B1), . . . , P (Bk) is

Dirichlet

(
αP0(B1) +

∑
i

I{yi ∈ B1}, . . . , αP0(Bk) +
∑
i

I{yi ∈ Bk}

)
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Dirichlet Process — Inference
The argument on the previous page holds for any finite partition of Ω. Therefore, the
posterior distribution of P given y is still a Dirichlet process.

DP

(
αP0 +

∑
i

δyi

)

where δyi is the Dirac measure at yi.

For any measurable set B, we have

E[P (B) | y] =
α

α+ n
P0(B) +

n

α+ n

∑
i

δyi(B)

In the special case that α = 0, we have

P | y ∼ DP

(∑
i

δyi

)
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Dirichlet Process — Stick-breaking Construction

We can construct the Dirichlet process through a stick-breaking process:

P (·) =

∞∑
h=1

πhδθh(·)

with

πh = Vh

h−1∏
j=1

(1− Vj), Vh ∼ Beta(1, α)

θh ∼ P0

It is easy to verify that:
∞∑
h=1

πh = 1
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Dirichlet Process — Stick-breaking Construction

The process can be described as follows:

I Start with a stick of length 1.

I Break the stick at a random point V1 with V1 ∼ Beta(1, α).

I The length of the remaining stick is 1− V1.

I Break the remaining stick at a random point V2 with V2 ∼ Beta(1, α).

I The length of the remaining stick is (1− V1)V2.

I Repeat the process.
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Dirichlet Process Mixtures

The major drawback of the Dirichlet process is that it is discrete.

To overcome this, we can use the Dirichlet process as a prior for the mixing
distribution in a mixture model.

p(y | P ) =

∫
K(y | θ)dP (θ)

where K is the kernel of the mixture model.

The model can be written as

yi ∼ K(θi), θi ∼ P, P ∼ DP(αP0)
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Dirichlet Process Mixtures

yi ∼ K(θi), θi ∼ P, P ∼ DP(αP0)

Suppose we have observed θ1, . . . , θi−1, then the predictive distribution of θi is

p(θi | θ1, . . . , θi−1) =
α

α+ i− 1
P0(θi) +

1

α+ i− 1

i−1∑
j=1

δθj (θi)

This is called “Polya urn predictive rule”.

Polya urn model:

I We start with a urn with x red balls and y blue balls.

I At each step, we draw a ball from the urn and put it back with an additional ball
of the same color.
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Dirichlet Process Mixtures

It is also connect to the Chinese restaurant process.

Chinese restaurant process:

I There is a restaurant with infinite tables.

I The first customer sits at the first table.

I The i-th customer sits at the j-th table with probability
nj

α+i−1 , where nj is the
number of customers at the j-th table.

I The i-th customer sits at a new table with probability α
α+i−1 .

I The number of customers at each table follows a Polya urn model.

I The process is exchangeable.
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Dirichlet Process Mixtures

The hyperprior for α is often chosen to be a gamma distribution:

α ∼ Gamma(a, b)

It is usually more difficult to choose the hyperprior for P0.

Then the model is a hierarchical model. The posterior distribution of α can be derived
through MCMC.

I See marginal Gibbs sampling and block Gibbs sampling in textbook Ch. 23.3.
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