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Conditional Modeling

I Traditional regression models are based on the conditional distribution of the
response variable given the covariates.

y = Xβ + ε

where
I y is the response variable (n× 1),
I X is the design matrix (n× p),
I β is the regression coefficients (p× 1),
I ε is the error term (n× 1).

I It is often assumed that
I X is fixed and known,
I ε ∼ N(0, σ2I).
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Conditional Modeling

I The inference is based on the conditional distribution of y given X, β and σ2.:

y|X,β, σ2 ∼ N (Xβ, σ2I).

I Frequentists maximize the log-likelihood function:

`(β, σ2;y) = − 1

2σ2
‖y −Xβ‖2 − n

2
log σ2

I The MLE therefore is given by

β̂ = (XTX)−1XTy, σ̂2 =
1

n
‖y −Xβ̂‖2.

I However, it is not a full probabilistic model.
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Bayesian Linear Regression

I In Bayesian regression, we treat β and σ2 as random variables.

I We put priors on β and σ2:

β ∼ π(β),

σ2 ∼ π(σ2).

I The joint distribution of y, β and σ2 is given by

p(y,β, σ2) = p(y|β, σ2)p(β)p(σ2).

I The posterior distribution of β and σ2 is given by

p(β, σ2|y) ∝ p(y|β, σ2)p(β)p(σ2).
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Bayesian Linear Regression

I The noninformative prior for β and σ2 is often taken as

π(β) ∝ 1,

π(σ2) ∝ 1

σ2
.

Derivation: (1) Jeffreys prior (2) results for location-scale families.

I We can derive the posteroir distribution of β and σ2 by

p(β, σ2|y) ∝ p(y|β, σ2)p(β)p(σ2)

∝ σ−n exp

(
− 1

2σ2
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)
× 1× 1
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Bayesian Linear Regression

I Notice that:

‖y −Xβ‖2 = (β − β̂)TXTX(β − β̂) + ‖y‖2 − ‖Xβ̂‖2

where β̂ = (XTX)−1XTy.

I Therefore, the posterior distribution of β and σ2 is given by

p(β, σ2|y) ∝ σ−n−2 exp

(
−(β − β̂)TXTX(β − β̂) + ‖y‖2 − ‖Xβ̂‖2

2σ2

)
.

I Compared to Normal-Inverse-Gamma distribution, the normal component is
replaced with a multivariate normal distribution.

I Compared to Normal-Inverse-Wishart distribution, the covariance component is
replaced with σ2(XTX)−1.
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p(β, σ2|y) ∝ σ−n−2 exp

(
−(β − β̂)TXTX(β − β̂) + ‖y‖2 − ‖Xβ̂‖2

2σ2

)

I The conditional posterior of β given σ2 and y is given by

β|σ2,y ∼ N
(
β̂, σ2(XTX)−1

)
I The conditional posterior of σ2 given β and y is given by

σ2 | β,y ∼ InvGamma

(
n
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I The marginal posterior of σ2 is given by

σ2|y ∼ InvGamma
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I This ia a multivariate t distribution with degree n− p, mean β̂ and covariance
‖y‖2−‖Xβ̂‖2

n−p (XTX)−1.
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I Sampling from InvGamma(α, β):
I Generate x ∼ χ2

2α,
I Then y = β

2x .

I Sampling from N (µ,Σ):
I Cholesky decomposition: Σ = LLT , where L is lower triangular,
I Generate z ∼ N (0, I),
I Then x = µ+Lz.
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Predictive Distribution

Suppose σ2 is known.

I The distribution for new observation ỹ given new covariate X̃ is given by

ỹ|y, σ2 ∼ N (X̃β̂, σ2I + σ2X̃(XTX)−1X̃T ).

I The mean is X̃β̂,

I The variance is σ2
(
I + X̃(XTX)−1X̃T

)
.

Suppose σ2 is unknown.

I The distribution for new observation ỹ given new covariate X̃ is a linear
transformation of a multivariate t distribution plus a Gaussian noise.

I The mean is X̃β̂,

I The variance is ‖y‖
2−‖Xβ̂‖2
n−p−2 X̃(XTX)−1X̃T + σ2I
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Example

I Example from textbook Sec. 14.3.

I The data contains the election data for the U.S. House of Representatives in the
past century (1900 – 2000).

I We would like to study the relationship between the percentage of votes for the
incumbent party and the decision whether the incumbent officeholder runs for
reelection.

I Goal: check if there is an advantage for the incumbent officeholder to reelect.
I Some facts of the data:

I Election every two years.
I The incumbent party is the party that won the previous election.
I 435 districts in the U.S. House of Representatives.
I Roughly 100 - 150 districts are uncontested.



Example

We formulate the problem as a simple linear regression model.

yi = α+ βRi + εi

I yi: the percentage of votes for the incumbent party in district i.

I Ri: a binary variable indicating whether the incumbent officeholder runs for
reelection.

I α: the expected percentage of votes for the incumbent party when they
incumbent officeholder does not run for reelection.

I α+ β: the expected percentage of votes for the incumbent party when the
incumbent officeholder does run for reelection.

I β: incumbency advantage.



Example

I The currnet model may have selection bias in the dataset.

I I.e. some variables may affect both the decision of reelection and the percentage
of votes.

I We should include those variables in the model as well.

yi = α+ βRi + γzi + δPi + εi

I zi: the percentage of votes for the incumbent party in the previous election.

I Pi: the indicator for Democratic party (1) or Republican party (0) controlling the
seat.



Example

With noninformative priors, the posterior inferences for the year 1988 are displayed
below.

I The incumbency advantage is estimated to be 11.4% and is significant.

I It shows a strong autoregressive effect in the percentage of votes for the
incumbent party.

I Party differrence is not significant.



Genearlizations

We consider the following generalizations of the linear regression model in the
subsequent slides.

I Diverse Covariance Structures: We may consider different covariance structures
for the error term.

I Regularization: Sometimes we would like to choose a prior that encourages
sparsity in the regression coefficients to prevent overfitting.

I Hierarchical Linear Models: We assume the regression coefficients are drawn
from a common distribution for different subsets of data.



Covariance Structure

In the general case, we may consider the following covariance structures for the error
term:

ε ∼ N (0,Σ)

where Σ is a positive definite matrix, that allows for different variances and
correlations between the errors.

In this case, the model is given by

y ∼ N (Xβ,Σ)
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Covariance Structure — Known Covariance

If Σ is known, the posterior distribution of β is given by

p(β|y,Σ) ∝ p(y|β,Σ)p(β)

∝ exp

(
−1

2
(y −Xβ)TΣ−1(y −Xβ)

)
× 1

∝ exp

(
−1

2
(β − β̂)TXTΣ−1X(β − β̂)

)
∼ N

(
β̂, (XTΣ−1X)−1

)
with

β̂ = (XTΣ−1X)−1XTΣ−1y



Covariance Structure — Unknown Covariance

If Σ is unknown, we may put a prior on Σ as well.

p(Σ | y,β) ∝ p(β,Σ | y)

p(β | y,Σ)

∝ p(Σ)|Σ|−1/2|XTΣ−1X|1/2 exp

(
−1

2
(y −Xβ̂)TΣ−1(y −Xβ̂)

)

I It is difficult to set up a prior for Σ.

I It is difficult to draw from this posterior distribution.

I Therefore, we often need some further simplification on Σ.
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Covariance Structure — Simplified Covariance
If the covariance matrix Σ is proportional to a known matrix Q, that is

Σ = σ2Q.

Then the posterior distribution of β is multivariate t and the posterior distribution of
σ2 is inverse gamma.

I One can derive it from the posterior distribution of β and σ2 on the previous few
slides.

I Or, it can be seen from the following transformation of data:

y∗ = Q−1/2y,

X∗ = Q−1/2X.

Q−1/2 is any matrix such that (Q−1/2)TQQ−1/2 = I.
Then the linear regression problem becomes regress y∗ on X∗ with i.i.d. noise.
All previous results apply.
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Covariance Structure — Simplified Covariance

In a weighted regression model, we may consider the following covariance structure for
the error term:

Σii = σ2/wi

where wi is the weight for the ith observation, and Σii is the ith diagonal element of
Σ.

I The model is the same as the previous one, with

Q = diag(w1, . . . , wn)

I All previous results apply.
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Covariance Structure — Simplified Covariance

The unequal weights can be generalized to a more general setting by introducing the
unequalness parameter φ such that

Σii = σ2v(wi, φ)

where φ ∈ [0, 1] controls the unequalness.

I Example: v(wi, φ) = w−φi . φ = 0 is the equal weight case and φ = 1 is the
inverse weight case.

I Example: v(wi, φ) = 1− φ+ φ/wi. φ = 0 is the equal weight case and φ = 1 is
the inverse weight case.

I A naturla noninformative prior for φ is the uniform distribution on [0, 1].

I For the posterior and its sampling, please check textbook Eq. (14.21) and (14.22).
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Regularization

In linear regression problem, the regularized least squares minimize the following
objective function:

min
β
‖y −Xβ‖2 + λR(β),

where R(β) is a penalty term that penalizes the complexity of the model.

I Ridge regression: R(β) = ‖β‖2.

I Lasso regression: R(β) = ‖β‖1.

I Elastic net: R(β) = α‖β‖1 + (1− α)‖β‖2.

I Notice that the sum of squared errors is equivalent to the negative log-likelihood
function.

I The regularized least squares is equivalent to the maximum a posteriori estimation
with a prior on β that corresponds to the exponential of the negative penalty.
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with a prior on β that corresponds to the exponential of the negative penalty.



Regularization — Ridge
In Ridge regression, we put a Gaussian prior on β:

p(β) ∝ exp

(
− λ

2σ2
‖β‖2

)
This is a multivariate normal distribution with mean 0 and covariance σ2

λ I.

The posterior is (under noninformative prior for σ2)

p(β, σ2|y) ∝ σ−n−2 exp

(
− 1

2σ2
‖y −Xβ‖2 − λ‖β‖2

)
∝ σ−n−2 exp

(
− 1

2σ2
(β − β̂)T (XTX + λI)(β − β̂)

)
× exp

(
− 1

2σ2
(
‖y‖2 − yTX(XTX + λI)−1XTy

))
with β̂ = (XTX + λI)−1XTy. The conditional/marginal posteriors are the similar as
before except that XTX is replaced with XTX + λI.
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Regularization — LASSO

In LASSO (Least Absolute Shrinkage and Selection Operator) regression, we put a
Laplace prior on β:

p(β) ∝ exp

(
− λ

2σ2
‖β‖1

)

I The posterior distribution is not a standard distribution.

I We usually do not have a closed form for the posterior mode.

I The posterior mode can force some coefficients to be exactly zero, resulting in a
sparse model.

I The sparsity is due to the non-differentiability of the prior at 0.

I Or, the sub-derivative of the prior at 0 contains a neighborhood of 0.
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Regularization — Spike-and-Slab

Besides the Ridge and LASSO, which “encourage” coefficients to be small through the
prior, we may also consider the Spike-and-Slab prior that directly set a probability for
the coefficient to be zero.

Specifically, for each coefficient βj , we set a prior as

p(βj) = θ δ(βj)︸ ︷︷ ︸
spike

+(1− θ) pslab(βj)︸ ︷︷ ︸
slab

,

I The prior is a mixture of a point mass at 0 and a continuous distribution.

I δ(βj) is the Dirac delta function at 0 corresponding to the “spike” component.

I pslab(βj) is the continuous distribution corresponding to the “slab” component.
pslab can be chosen as uniform, Gaussian, etc..

I θ is the probability of sparsity that controls the mixture rate between the two
components.
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Regularization — Spike-and-Slab

In practice, several modifications can be used to make inference with the
Spike-and-Slab prior:

I It is often more conveinent to introduce a binary variable zj such that

zj ∼ Bernoulli(θ),

βj | zj = 1 ∼ δ0,
βj | zj = 0 ∼ pslab.

I It is often more conveient to set the spike component as a Gaussian distribution
with a very small variance, and the slab component as a Gaussian distribution
with a larger variance.

I Sampling from the posterior distribution is often done by Gibbs sampling for
(β, z).
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Hierarchical Linear Models

If we have linear regression models for different subsets of data, we may assume that
the regression coefficients are drawn from a common distribution.

yi = Xiβi + εi

with
βi ∼ P, i.i.d.

where P is common distribution for the linear regression coefficients.

I When P is Gaussian, the model is also called a random effects model.

I Sometimes, only part of the βi are random effects, and the rest are fixed effects
(same for all groups).

I If the random effects in above are normal, the model is also called a mixed effects
model.
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Example: U.S. presidential elections

The data contains results from the U.S. presidential elections for all states from 1948
to 1988.

I 511 records by removing the District of Columbia and all third-party victories.

I The response variable is the percentage of votes for the Democratic party.



Example: U.S. presidential elections

I Previous election results have a strong effect on the current election results.

I Some outiliers from the southern states. (Upper left on the second graph)



Example: U.S. presidential elections
All covariates used for linear regression:



Example: U.S. presidential elections
We compare the values of the test variable T (y,θ) from the posterior simulations of β
to the hypothetical replicated valuesunder the model, T (y(rep),θ).

The performance is not satisfactory.



Example: U.S. presidential elections

Now we consider a hierarchical model for the data.

yst ∼ N (Xstβ + γr(s)t + δt, σ
2),

γrt ∼

{
N (0, τ2γ1) for r = 1, 2, 3 (non-south)

N (0, τ2γ2) for r = 4 (south)

δt ∼ N (0, τ2δ )

I γrt: different intercepts for different regions.

I δt: different intercepts for different years.

I β dependence on other covariates is assumed to be the same for all regions and
years.

I Hyperprior for the hyperparameters are set to uniform.



Example: U.S. presidential elections

We conduct the Bayesian predictive checks for the hierarchical model.


