STAT 576 Bayesian Analysis

Lecture 12: Bayesian Regression Models

Chencheng Cai

Washington State University

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright Traditional regression models are based on the conditional distribution of the response variable given the covariates.

$$
\bm{y} = \bm{X}\bm{\beta} + \bm{\epsilon}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 990

In Traditional regression models are based on the conditional distribution of the response variable given the covariates.

$$
\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

where

- \blacktriangleright y is the response variable $(n \times 1)$,
- \blacktriangleright **X** is the design matrix $(n \times p)$,
- \triangleright β is the regression coefficients $(p \times 1)$,
- \blacktriangleright ϵ is the error term $(n \times 1)$.

 \blacktriangleright Traditional regression models are based on the conditional distribution of the response variable given the covariates.

$$
\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

where

- \blacktriangleright y is the response variable $(n \times 1)$,
- \blacktriangleright X is the design matrix $(n \times p)$,
- \triangleright β is the regression coefficients $(p \times 1)$,
- \blacktriangleright ϵ is the error term $(n \times 1)$.
- \blacktriangleright It is often assumed that
	- \blacktriangleright X is fixed and known,
	- $\blacktriangleright \epsilon \sim N(0, \sigma^2 I).$

▶ The inference is based on the conditional distribution of \bm{y} given \bm{X} , $\bm{\beta}$ and σ^2 .:

$$
y|X, \beta, \sigma^2 \sim \mathcal{N}(X\beta, \sigma^2 I).
$$

 \blacktriangleright Frequentists maximize the log-likelihood function:

$$
\ell(\boldsymbol{\beta}, \sigma^2; \mathbf{y}) = -\frac{1}{2\sigma^2} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2 - \frac{n}{2} \log \sigma^2
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

▶ The inference is based on the conditional distribution of \bm{y} given \bm{X} , $\bm{\beta}$ and σ^2 .:

$$
y|X, \beta, \sigma^2 \sim \mathcal{N}(X\beta, \sigma^2 I).
$$

 \blacktriangleright Frequentists maximize the log-likelihood function:

$$
\ell(\boldsymbol{\beta}, \sigma^2; \boldsymbol{y}) = -\frac{1}{2\sigma^2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 - \frac{n}{2} \log \sigma^2
$$

 \blacktriangleright The MLE therefore is given by

$$
\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}, \quad \hat{\sigma}^2 = \frac{1}{n} ||\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}||^2.
$$

 \blacktriangleright However, it is **not** a full probabilistic model.

► In Bayesian regression, we treat β and σ^2 as random variables.

 \blacktriangleright We put priors on β and σ^2 :

$$
\begin{aligned} \mathbf{\beta} &\sim \pi(\mathbf{\beta}), \\ \sigma^2 &\sim \pi(\sigma^2). \end{aligned}
$$

► In Bayesian regression, we treat β and σ^2 as random variables. \blacktriangleright We put priors on β and σ^2 :

$$
\begin{aligned} \boldsymbol{\beta} &\sim \pi(\boldsymbol{\beta}), \\ \sigma^2 &\sim \pi(\sigma^2). \end{aligned}
$$

 \blacktriangleright The joint distribution of \pmb{y} , $\pmb{\beta}$ and σ^2 is given by

$$
p(\mathbf{y}, \boldsymbol{\beta}, \sigma^2) = p(\mathbf{y}|\boldsymbol{\beta}, \sigma^2)p(\boldsymbol{\beta})p(\sigma^2).
$$

The posterior distribution of β and σ^2 is given by

$$
p(\boldsymbol{\beta}, \sigma^2 | \mathbf{y}) \propto p(\mathbf{y} | \boldsymbol{\beta}, \sigma^2) p(\boldsymbol{\beta}) p(\sigma^2).
$$

The noninformative prior for β and σ^2 is often taken as

$$
\pi(\boldsymbol{\beta}) \propto 1,
$$

$$
\pi(\sigma^2) \propto \frac{1}{\sigma^2}.
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Derivation: (1) Jeffreys prior (2) results for location-scale families.

The noninformative prior for β and σ^2 is often taken as

$$
\pi(\boldsymbol{\beta}) \propto 1,
$$

$$
\pi(\sigma^2) \propto \frac{1}{\sigma^2}.
$$

Derivation: (1) Jeffreys prior (2) results for location-scale families. \blacktriangleright We can derive the posteroir distribution of β and σ^2 by

$$
p(\boldsymbol{\beta}, \sigma^2 | \mathbf{y}) \propto p(\mathbf{y} | \boldsymbol{\beta}, \sigma^2) p(\boldsymbol{\beta}) p(\sigma^2)
$$

$$
\propto \sigma^{-n} \exp\left(-\frac{1}{2\sigma^2} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2\right) \times 1 \times \frac{1}{\sigma^2}
$$

$$
\propto \sigma^{-n} \exp\left(-\frac{1}{2\sigma^2} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2\right) \times \frac{1}{\sigma^2}.
$$

 \blacktriangleright Notice that:

$$
\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 = (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T \mathbf{X}^T \mathbf{X} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) + \|\mathbf{y}\|^2 - \|\mathbf{X}\hat{\boldsymbol{\beta}}\|^2
$$

where
$$
\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.
$$

K □ K K 라 K K 라 K K 라 X K X K K K N K 다

 \blacktriangleright Notice that:

$$
\|\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\|^2=(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^T\boldsymbol{X}^T\boldsymbol{X}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})+\|\boldsymbol{y}\|^2-\|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2
$$

where $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}.$

Therefore, the posterior distribution of β and σ^2 is given by

$$
p(\boldsymbol{\beta}, \sigma^2 | \boldsymbol{y}) \propto \sigma^{-n-2} \exp \left(-\frac{(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^T\boldsymbol{X}^T\boldsymbol{X} (\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) + \|\boldsymbol{y}\|^2 -\|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2}{2\sigma^2} \right).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Notice that:

$$
\|\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\|^2=(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^T\boldsymbol{X}^T\boldsymbol{X}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})+\|\boldsymbol{y}\|^2-\|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2
$$

where $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}.$

Therefore, the posterior distribution of β and σ^2 is given by

$$
p(\boldsymbol{\beta}, \sigma^2 | \boldsymbol{y}) \propto \sigma^{-n-2} \exp \left(-\frac{(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^T\boldsymbol{X}^T\boldsymbol{X} (\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) + \|\boldsymbol{y}\|^2 - \|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2}{2\sigma^2}\right).
$$

- \triangleright Compared to Normal-Inverse-Gamma distribution, the normal component is replaced with a multivariate normal distribution.
- ▶ Compared to Normal-Inverse-Wishart distribution, the covariance component is replaced with $\sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}.$

$$
p(\boldsymbol{\beta}, \sigma^2 | \mathbf{y}) \propto \sigma^{-n-2} \exp \left(-\frac{(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T \mathbf{X}^T \mathbf{X} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) + ||\mathbf{y}||^2 - ||\mathbf{X}\hat{\boldsymbol{\beta}}||^2}{2\sigma^2} \right)
$$

$$
p(\boldsymbol{\beta}, \sigma^2 | \boldsymbol{y}) \propto \sigma^{-n-2} \exp \left(-\frac{(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T \boldsymbol{X}^T \boldsymbol{X} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) + \|\boldsymbol{y}\|^2 - \|\boldsymbol{X} \hat{\boldsymbol{\beta}}\|^2}{2\sigma^2} \right)
$$

The conditional posterior of β given σ^2 and y is given by

$$
\boldsymbol{\beta}|\sigma^2,\boldsymbol{y}\sim\mathcal{N}\left(\hat{\boldsymbol{\beta}},\sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}\right)
$$

KO KKOKKEKKEK E DAG

$$
p(\boldsymbol{\beta}, \sigma^2 | \boldsymbol{y}) \propto \sigma^{-n-2} \exp \left(-\frac{(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T \boldsymbol{X}^T \boldsymbol{X} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) + \|\boldsymbol{y}\|^2 - \|\boldsymbol{X} \hat{\boldsymbol{\beta}}\|^2}{2\sigma^2} \right)
$$

The conditional posterior of β given σ^2 and y is given by $\boldsymbol{\beta}|\sigma^2,\boldsymbol{y}\sim\mathcal{N}\left(\hat{\boldsymbol{\beta}},\sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}\right),$

The conditional posterior of σ^2 given $\boldsymbol{\beta}$ and \boldsymbol{y} is given by

$$
\sigma^2 \mid \boldsymbol{\beta}, \boldsymbol{y} \sim \text{InvGamma}\left(\frac{n}{2}, ~\frac{1}{2} \lVert \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \rVert^2 \right)
$$

KORKARYKERKER OQO

$$
p(\boldsymbol{\beta}, \sigma^2 | \mathbf{y}) \propto \sigma^{-n-2} \exp \left(-\frac{(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T \mathbf{X}^T \mathbf{X} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) + \|\mathbf{y}\|^2 - \|\mathbf{X} \hat{\boldsymbol{\beta}}\|^2}{2\sigma^2} \right)
$$

The conditional posterior of β given σ^2 and y is given by $\boldsymbol{\beta}|\sigma^2,\boldsymbol{y}\sim\mathcal{N}\left(\hat{\boldsymbol{\beta}},\sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}\right),$

► The conditional posterior of
$$
\sigma^2
$$
 given β and y is given by\n
$$
\sigma^2 \mid \beta, y \sim \text{InvGamma}\left(\frac{n}{2}, \frac{1}{2} || y - X\beta ||^2\right)
$$

The marginal posterior of σ^2 is given by

$$
\sigma^2|\boldsymbol{y} \sim \text{InvGamma}\left(\frac{n-p}{2}, \ \frac{\|\boldsymbol{y}\|^2 - \|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2}{2}\right)
$$

$$
p(\boldsymbol{\beta}, \sigma^2 | \mathbf{y}) \propto \sigma^{-n-2} \exp \left(-\frac{(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T \mathbf{X}^T \mathbf{X} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) + ||\mathbf{y}||^2 - ||\mathbf{X}\hat{\boldsymbol{\beta}}||^2}{2\sigma^2} \right)
$$

 \blacktriangleright The marginal posterior of β can be obtained by

$$
p(\boldsymbol{\beta} \mid \boldsymbol{y}) = \frac{p(\boldsymbol{\beta}, \sigma^2 \mid \boldsymbol{y})}{p(\sigma^2 \mid \boldsymbol{\beta}, \boldsymbol{y})} \propto \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^{-n}
$$

$$
\propto \left((\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T \boldsymbol{X}^T \boldsymbol{X} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) + \|\boldsymbol{y}\|^2 - \|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2 \right)^{-n/2}
$$

$$
\propto \left(1 + \frac{(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T \boldsymbol{X}^T \boldsymbol{X} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})}{\|\boldsymbol{y}\|^2 - \|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2} \right)^{-n/2}
$$

KO KKOKKEKKEK E DAG

$$
p(\boldsymbol{\beta}, \sigma^2 | \mathbf{y}) \propto \sigma^{-n-2} \exp \left(-\frac{(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T \mathbf{X}^T \mathbf{X} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) + ||\mathbf{y}||^2 - ||\mathbf{X}\hat{\boldsymbol{\beta}}||^2}{2\sigma^2} \right)
$$

 \blacktriangleright The marginal posterior of β can be obtained by

$$
p(\boldsymbol{\beta} \mid \boldsymbol{y}) = \frac{p(\boldsymbol{\beta}, \sigma^2 \mid \boldsymbol{y})}{p(\sigma^2 \mid \boldsymbol{\beta}, \boldsymbol{y})} \propto \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^{-n}
$$

$$
\propto \left((\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T \boldsymbol{X}^T \boldsymbol{X} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) + \|\boldsymbol{y}\|^2 - \|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2 \right)^{-n/2}
$$

$$
\propto \left(1 + \frac{(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T \boldsymbol{X}^T \boldsymbol{X} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})}{\|\boldsymbol{y}\|^2 - \|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2} \right)^{-n/2}
$$

▶ This ia a multivariate t distribution with degree $n - p$, mean $\hat{\beta}$ and covariance $||y||^2 - ||X\hat{\beta}||^2$ $\frac{-\|\boldsymbol{X}\boldsymbol{\beta}\|^2}{n-p}(\boldsymbol{X}^T\boldsymbol{X})^{-1}.$.
◆ ロ ▶ → 레 ▶ → 로 ▶ → 로 ▶ → 로 → ⊙Q ⊙

 \blacktriangleright Easier way:

$$
\sigma^2 \mid \mathbf{y} \sim \text{InvGamma}\left(\frac{n-p}{2}, \frac{\|\mathbf{y}\|^2 - \|\mathbf{X}\hat{\boldsymbol{\beta}}\|^2}{2}\right)
$$

$$
\boldsymbol{\beta} \mid \sigma^2, \mathbf{y} \sim \mathcal{N}\left(\hat{\boldsymbol{\beta}}, \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}\right)
$$

イロトメタトメミドメミド ミニの女色

 \blacktriangleright Easier way:

$$
\sigma^2 \mid \boldsymbol{y} \sim \text{InvGamma}\left(\frac{n-p}{2}, \frac{\|\boldsymbol{y}\|^2 - \|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2}{2}\right)
$$

$$
\boldsymbol{\beta} \mid \sigma^2, \boldsymbol{y} \sim \mathcal{N}\left(\hat{\boldsymbol{\beta}}, \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}\right)
$$

$$
\begin{aligned} \boldsymbol{\beta} \mid \boldsymbol{y} &\sim t_{n-p}\left(\hat{\boldsymbol{\beta}}, \frac{\|\boldsymbol{y}\|^2-\|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2}{n-p}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\right) \\ \sigma^2 \mid \boldsymbol{\beta}, \boldsymbol{y} &\sim \text{InvGamma}\left(\frac{n}{2},\; \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\|^2\right) \end{aligned}
$$

KO KKOKKEKKEK E 1990

$$
\sigma^2 \mid \mathbf{y} \sim \text{InvGamma}\left(\frac{n-p}{2}, \frac{\|\mathbf{y}\|^2 - \|\mathbf{X}\hat{\boldsymbol{\beta}}\|^2}{2}\right)
$$

$$
\boldsymbol{\beta} \mid \sigma^2, \mathbf{y} \sim \mathcal{N}\left(\hat{\boldsymbol{\beta}}, \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}\right)
$$

K ロ K K 대 K K 및 K K 및 K X X K K K X X X X X

$$
\sigma^2 \mid \boldsymbol{y} \sim \text{InvGamma}\left(\frac{n-p}{2}, \frac{\|\boldsymbol{y}\|^2 - \|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2}{2}\right)
$$

$$
\boldsymbol{\beta} \mid \sigma^2, \boldsymbol{y} \sim \mathcal{N}\left(\hat{\boldsymbol{\beta}}, \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}\right)
$$

K ロ K K 대 K K 및 K K 및 K X X K K K X X X X X

▶ Sampling from
$$
InvGamma(\alpha, \beta)
$$
:

► Generate
$$
x \sim \chi^2_{2\alpha}
$$
,
▶ Then $y = \frac{\beta}{2x}$.

$$
\sigma^2 \mid \mathbf{y} \sim \text{InvGamma}\left(\frac{n-p}{2}, \frac{\|\mathbf{y}\|^2 - \|\mathbf{X}\hat{\boldsymbol{\beta}}\|^2}{2}\right)
$$

$$
\boldsymbol{\beta} \mid \sigma^2, \mathbf{y} \sim \mathcal{N}\left(\hat{\boldsymbol{\beta}}, \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}\right)
$$

- Sampling from InvGamma (α, β) :
	- \triangleright Generate $x \sim \chi^2_{2\alpha}$,
	- **I** Then $y = \frac{\beta}{2x}$.
- Sampling from $\mathcal{N}(\mu, \Sigma)$:
	- ► Cholesky decomposition: $\Sigma = LL^T$, where L is lower triangular,
	- ► Generate $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$
	- In then $x = \mu + Lz$.

Predictive Distribution

Suppose σ^2 is known.

I The distribution for new observation \tilde{y} given new covariate \tilde{X} is given by

$$
\tilde{\boldsymbol{y}}|\boldsymbol{y},\sigma^2 \sim \mathcal{N}(\tilde{\boldsymbol{X}}\hat{\boldsymbol{\beta}}, \sigma^2\boldsymbol{I} + \sigma^2\tilde{\boldsymbol{X}}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\tilde{\boldsymbol{X}}^T).
$$

KORK (DRK ERK ERK) ER 1990

► The mean is
$$
\tilde{X}\hat{\beta}
$$
,
▶ The variance is $\sigma^2 \left(I + \tilde{X}(X^T X)^{-1} \tilde{X}^T \right)$.

Predictive Distribution

Suppose σ^2 is known.

 \blacktriangleright The distribution for new observation \tilde{y} given new covariate \tilde{X} is given by

$$
\tilde{\boldsymbol{y}}|\boldsymbol{y},\sigma^2 \sim \mathcal{N}(\tilde{\boldsymbol{X}}\hat{\boldsymbol{\beta}}, \sigma^2\boldsymbol{I} + \sigma^2\tilde{\boldsymbol{X}}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\tilde{\boldsymbol{X}}^T).
$$

► The mean is
$$
\tilde{X}\hat{\beta}
$$
,
▶ The variance is $\sigma^2 \left(I + \tilde{X}(X^T X)^{-1} \tilde{X}^T\right)$.

Suppose σ^2 is unknown.

- \blacktriangleright The distribution for new observation \tilde{y} given new covariate \tilde{X} is a linear transformation of a multivariate t distribution plus a Gaussian noise.
- \blacktriangleright The mean is $\tilde{X}\hat{\beta}$,

$$
\blacktriangleright
$$
 The variance is
$$
\frac{\|y\|^2 - \|X\hat{\beta}\|^2}{n - p - 2} \tilde{X}(X^T X)^{-1} \tilde{X}^T + \sigma^2 I
$$

- Example from textbook Sec. 14.3 .
- \blacktriangleright The data contains the election data for the U.S. House of Representatives in the past century (1900 – 2000).
- \triangleright We would like to study the relationship between the percentage of votes for the incumbent party and the decision whether the incumbent officeholder runs for reelection.
- \triangleright Goal: check if there is an advantage for the incumbent officeholder to reelect.
- \triangleright Some facts of the data:
	- \blacktriangleright Election every two years.
	- \blacktriangleright The incumbent party is the party that won the previous election.
	- \blacktriangleright 435 districts in the U.S. House of Representatives.
	- \triangleright Roughly 100 150 districts are uncontested.

We formulate the problem as a simple linear regression model.

$$
y_i = \alpha + \beta R_i + \epsilon_i
$$

- \blacktriangleright y_i : the percentage of votes for the **incumbent party** in district i.
- \blacktriangleright R_i : a binary variable indicating whether the **incumbent officeholder** runs for reelection.
- \triangleright α : the expected percentage of votes for the incumbent party when they incumbent officeholder **does not** run for reelection.
- $\triangleright \alpha + \beta$: the expected percentage of votes for the incumbent party when the incumbent officeholder does run for reelection.
- \blacktriangleright β : incumbency advantage.

- \blacktriangleright The currnet model may have selection bias in the dataset.
- \blacktriangleright I.e. some variables may affect both the decision of reelection and the percentage of votes.
- \triangleright We should include those variables in the model as well.

$$
y_i = \alpha + \beta R_i + \gamma z_i + \delta P_i + \epsilon_i
$$

 \blacktriangleright z_i : the percentage of votes for the incumbent party in the **previous election**. \blacktriangleright P_i : the indicator for Democratic party (1) or Republican party (0) controlling the seat.

With noninformative priors, the posterior inferences for the year 1988 are displayed below.

- \triangleright The incumbency advantage is estimated to be 11.4% and is significant.
- It shows a strong autoregressive effect in the percentage of votes for the incumbent party.
- \blacktriangleright Party differrence is not significant.

We consider the following generalizations of the linear regression model in the subsequent slides.

- **Diverse Covariance Structures:** We may consider different covariance structures for the error term.
- **Exegularization:** Sometimes we would like to choose a prior that encourages sparsity in the regression coefficients to prevent overfitting.
- \blacktriangleright Hierarchical Linear Models: We assume the regression coefficients are drawn from a common distribution for different subsets of data.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

In the general case, we may consider the following covariance structures for the error term:

 $\epsilon \sim \mathcal{N}(\mathbf{0},\mathbf{\Sigma})$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

where Σ is a positive definite matrix, that allows for different variances and correlations between the errors.

In the general case, we may consider the following covariance structures for the error term:

 $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$

where Σ is a positive definite matrix, that allows for different variances and correlations between the errors.

In this case, the model is given by

 $y \sim \mathcal{N}(X\beta, \Sigma)$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Covariance Structure — Known Covariance

If Σ is known, the posterior distribution of β is given by

$$
p(\boldsymbol{\beta}|\boldsymbol{y}, \boldsymbol{\Sigma}) \propto p(\boldsymbol{y}|\boldsymbol{\beta}, \boldsymbol{\Sigma})p(\boldsymbol{\beta})
$$

\$\propto\$ $\exp\left(-\frac{1}{2}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T\boldsymbol{\Sigma}^{-1}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})\right) \times 1$
\$\propto\$ $\exp\left(-\frac{1}{2}(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T\boldsymbol{X}^T\boldsymbol{\Sigma}^{-1}\boldsymbol{X}(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})\right)$
\$\sim\$ $\mathcal{N}\left(\hat{\boldsymbol{\beta}}, (\boldsymbol{X}^T\boldsymbol{\Sigma}^{-1}\boldsymbol{X})^{-1}\right)$

with

$$
\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{y}
$$

K □ K K 라 K K 라 K X 라 X X X X X X X 라

Covariance Structure — Unknown Covariance

If Σ is unknown, we may put a prior on Σ as well.

$$
\begin{aligned} p(\boldsymbol{\Sigma} \mid \boldsymbol{y}, \boldsymbol{\beta}) &\propto \frac{p(\boldsymbol{\beta}, \boldsymbol{\Sigma} \mid \boldsymbol{y})}{p(\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{\Sigma})} \\ &\propto p(\boldsymbol{\Sigma}) |\boldsymbol{\Sigma}|^{-1/2} |\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X}|^{1/2} \exp \left(-\frac{1}{2} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}) \right) \end{aligned}
$$

KOKK@KKEKKEK E 1990

Covariance Structure — Unknown Covariance

If Σ is unknown, we may put a prior on Σ as well.

$$
\begin{aligned} p(\boldsymbol{\Sigma} \mid \boldsymbol{y}, \boldsymbol{\beta}) &\propto \frac{p(\boldsymbol{\beta}, \boldsymbol{\Sigma} \mid \boldsymbol{y})}{p(\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{\Sigma})} \\ &\propto p(\boldsymbol{\Sigma}) |\boldsymbol{\Sigma}|^{-1/2} |\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X}|^{1/2} \exp\left(-\frac{1}{2} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}})\right) \end{aligned}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- It is difficult to set up a prior for Σ .
- \blacktriangleright It is difficult to draw from this posterior distribution.
- **I** Therefore, we often need some further simplification on Σ .

If the covariance matrix Σ is proportional to a known matrix Q , that is

$$
\Sigma = \sigma^2 Q.
$$

If the covariance matrix Σ is proportional to a known matrix Q, that is

$$
\Sigma = \sigma^2 Q.
$$

Then the posterior distribution of β is multivariate t and the posterior distribution of σ^2 is inverse gamma.

KO KKOKKEKKEK E DAG

If the covariance matrix Σ is proportional to a known matrix Q, that is

$$
\Sigma = \sigma^2 Q.
$$

Then the posterior distribution of β is multivariate t and the posterior distribution of σ^2 is inverse gamma.

 \triangleright One can derive it from the posterior distribution of β and σ^2 on the previous few slides.

KO K K Ø K K E K K E K V K K K K K K K K K

If the covariance matrix Σ is proportional to a known matrix Q , that is

$$
\Sigma = \sigma^2 Q.
$$

Then the posterior distribution of β is multivariate t and the posterior distribution of σ^2 is inverse gamma.

- \triangleright One can derive it from the posterior distribution of β and σ^2 on the previous few slides.
- \triangleright Or, it can be seen from the following transformation of data:

$$
\boldsymbol{y}^* = \boldsymbol{Q}^{-1/2}\boldsymbol{y}, \\ \boldsymbol{X}^* = \boldsymbol{Q}^{-1/2}\boldsymbol{X}.
$$

 $\boldsymbol{Q}^{-1/2}$ is any matrix such that $(\boldsymbol{Q}^{-1/2})^T\boldsymbol{Q}\boldsymbol{Q}^{-1/2} = \boldsymbol{I}.$ Then the linear regression problem becomes regress y^* on X^* with i.i.d. noise. All previous results apply.

In a weighted regression model, we may consider the following covariance structure for the error term:

$$
\Sigma_{ii} = \sigma^2/w_i
$$

where w_i is the weight for the i th observation, and Σ_{ii} is the i th diagonal element of Σ.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

In a weighted regression model, we may consider the following covariance structure for the error term:

$$
\Sigma_{ii} = \sigma^2/w_i
$$

where w_i is the weight for the i th observation, and Σ_{ii} is the i th diagonal element of Σ.

 \blacktriangleright The model is the same as the previous one, with

$$
\boldsymbol{Q} = \mathrm{diag}(w_1,\ldots,w_n)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright All previous results apply.

The unequal weights can be generalized to a more general setting by introducing the unequalness parameter ϕ such that

$$
\Sigma_{ii} = \sigma^2 v(w_i, \phi)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

where $\phi \in [0, 1]$ controls the unequalness.

The unequal weights can be generalized to a more general setting by introducing the unequalness parameter ϕ such that

$$
\Sigma_{ii} = \sigma^2 v(w_i, \phi)
$$

where $\phi \in [0, 1]$ controls the unequalness.

- ► Example: $v(w_i, \phi) = w_i^{-\phi}$ \bar{i}^{ϕ} . $\phi = 0$ is the equal weight case and $\phi = 1$ is the inverse weight case.
- Example: $v(w_i, \phi) = 1 \phi + \phi/w_i$. $\phi = 0$ is the equal weight case and $\phi = 1$ is the inverse weight case.

KORK ERKER ADAM ADA

The unequal weights can be generalized to a more general setting by introducing the unequalness parameter ϕ such that

$$
\Sigma_{ii} = \sigma^2 v(w_i, \phi)
$$

where $\phi \in [0, 1]$ controls the unequalness.

- ► Example: $v(w_i, \phi) = w_i^{-\phi}$ \bar{i}^{ϕ} . $\phi = 0$ is the equal weight case and $\phi = 1$ is the inverse weight case.
- Example: $v(w_i, \phi) = 1 \phi + \phi/w_i$. $\phi = 0$ is the equal weight case and $\phi = 1$ is the inverse weight case.
- A naturla noninformative prior for ϕ is the uniform distribution on [0, 1].
- \triangleright For the posterior and its sampling, please check textbook Eq. (14.21) and (14.22).

Regularization

In linear regression problem, the regularized least squares minimize the following objective function:

$$
\min_{\boldsymbol{\beta}} \, \|{\boldsymbol{y}} - {\boldsymbol{X}}\boldsymbol{\beta}\|^2 + \lambda R({\boldsymbol{\beta}}),
$$

where $R(\beta)$ is a penalty term that penalizes the complexity of the model.

Regularization

In linear regression problem, the regularized least squares minimize the following objective function:

$$
\min_{\boldsymbol{\beta}} \; \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \lambda R(\boldsymbol{\beta}),
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

where $R(\beta)$ is a penalty term that penalizes the complexity of the model.

$$
\blacktriangleright \text{ Ridge regression: } R(\boldsymbol{\beta}) = ||\boldsymbol{\beta}||^2.
$$

IDED Lasso regression: $R(\boldsymbol{\beta}) = ||\boldsymbol{\beta}||_1$.

► Elastic net:
$$
R(\boldsymbol{\beta}) = \alpha ||\boldsymbol{\beta}||_1 + (1 - \alpha) ||\boldsymbol{\beta}||^2
$$
.

Regularization

In linear regression problem, the regularized least squares minimize the following objective function:

$$
\min_{\boldsymbol{\beta}} \; \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \lambda R(\boldsymbol{\beta}),
$$

where $R(\beta)$ is a penalty term that penalizes the complexity of the model.

- Ridge regression: $R(\boldsymbol{\beta}) = ||\boldsymbol{\beta}||^2$.
- **Lasso regression:** $R(\boldsymbol{\beta}) = ||\boldsymbol{\beta}||_1$.
- ► Elastic net: $R(\boldsymbol{\beta}) = \alpha ||\boldsymbol{\beta}||_1 + (1 \alpha) ||\boldsymbol{\beta}||^2$.
- Notice that the sum of squared errors is equivalent to the negative log-likelihood function.
- \blacktriangleright The regularized least squares is equivalent to the maximum a posteriori estimation with a prior on β that corresponds to the exponential of the negative penalty.

Regularization — Ridge

In Ridge regression, we put a Gaussian prior on β :

$$
p(\boldsymbol{\beta}) \propto \exp\left(-\frac{\lambda}{2\sigma^2} ||\boldsymbol{\beta}||^2\right)
$$

This is a multivariate normal distribution with mean 0 and covariance $\frac{\sigma^2}{\lambda}$ $\frac{\partial \mathcal{L}}{\partial \lambda} \bm{I}$.

Regularization — Ridge

In Ridge regression, we put a Gaussian prior on β :

$$
p(\boldsymbol{\beta}) \propto \exp\left(-\frac{\lambda}{2\sigma^2} ||\boldsymbol{\beta}||^2\right)
$$

This is a multivariate normal distribution with mean 0 and covariance $\frac{\sigma^2}{\lambda}$ $\frac{\partial \mathcal{L}}{\partial \lambda} \bm{I}$.

The posterior is (under noninformative prior for $\sigma^2)$

$$
p(\boldsymbol{\beta}, \sigma^2 | \boldsymbol{y}) \propto \sigma^{-n-2} \exp \left(-\frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||^2 - \lambda ||\boldsymbol{\beta}||^2 \right)
$$

$$
\propto \sigma^{-n-2} \exp \left(-\frac{1}{2\sigma^2} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}) (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) \right)
$$

$$
\times \exp \left(-\frac{1}{2\sigma^2} (||\boldsymbol{y}||^2 - \boldsymbol{y}^T \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{y}) \right)
$$

with $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T\boldsymbol{X}+\lambda \boldsymbol{I})^{-1}\boldsymbol{X}^T\boldsymbol{y}$. The conditional/marginal posteriors are the similar as before except that $\boldsymbol{X}^T\boldsymbol{X}$ is replaced with $\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I}$. KID KA KERKER KID KO

Regularization — LASSO

In LASSO (Least Absolute Shrinkage and Selection Operator) regression, we put a Laplace prior on β :

$$
p(\boldsymbol{\beta}) \propto \exp\left(-\frac{\lambda}{2\sigma^2}\|\boldsymbol{\beta}\|_1\right)
$$

Regularization — LASSO

In LASSO (Least Absolute Shrinkage and Selection Operator) regression, we put a Laplace prior on β :

$$
p(\boldsymbol{\beta}) \propto \exp\left(-\frac{\lambda}{2\sigma^2} \|\boldsymbol{\beta}\|_1\right)
$$

- \blacktriangleright The posterior distribution is not a standard distribution.
- \triangleright We usually do not have a closed form for the posterior mode.

Regularization — LASSO

In LASSO (Least Absolute Shrinkage and Selection Operator) regression, we put a Laplace prior on β :

$$
p(\boldsymbol{\beta}) \propto \exp\left(-\frac{\lambda}{2\sigma^2} \|\boldsymbol{\beta}\|_1\right)
$$

- \blacktriangleright The posterior distribution is not a standard distribution.
- \triangleright We usually do not have a closed form for the posterior mode.
- In The posterior mode can force some coefficients to be exactly zero, resulting in a sparse model.
- \blacktriangleright The sparsity is due to the non-differentiability of the prior at 0.
- \triangleright Or, the sub-derivative of the prior at 0 contains a neighborhood of 0.

Besides the Ridge and LASSO, which "encourage" coefficients to be small through the prior, we may also consider the Spike-and-Slab prior that directly set a probability for the coefficient to be zero.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900 Q

Besides the Ridge and LASSO, which "encourage" coefficients to be small through the prior, we may also consider the Spike-and-Slab prior that directly set a probability for the coefficient to be zero.

Specifically, for each coefficient β_i , we set a prior as

- \triangleright The prior is a mixture of a point mass at 0 and a continuous distribution.
- \triangleright $\delta(\beta_i)$ is the Dirac delta function at 0 corresponding to the "spike" component.
- \triangleright $p_{slab}(\beta_i)$ is the continuous distribution corresponding to the "slab" component. p_{slab} can be chosen as uniform, Gaussian, etc..
- \triangleright θ is the probability of sparsity that controls the mixture rate between the two components.

In practice, several modifications can be used to make inference with the Spike-and-Slab prior:

In practice, several modifications can be used to make inference with the Spike-and-Slab prior:

It is often more conveinent to introduce a binary variable z_i such that

 $z_i \sim \text{Bernoulli}(\theta),$ $\beta_i \mid z_i = 1 \sim \delta_0,$ $\beta_i \mid z_i = 0 \sim p_{slab}.$

KO KKOKKEKKEK E DAG

In practice, several modifications can be used to make inference with the Spike-and-Slab prior:

It is often more conveinent to introduce a binary variable z_i such that

 $z_i \sim \text{Bernoulli}(\theta)$, $\beta_i \mid z_i = 1 \sim \delta_0$, $\beta_i \mid z_i = 0 \sim p_{slab}.$

It is often more conveient to set the spike component as a Gaussian distribution with a very small variance, and the slab component as a Gaussian distribution with a larger variance.

In practice, several modifications can be used to make inference with the Spike-and-Slab prior:

It is often more conveinent to introduce a binary variable z_i such that

 $z_i \sim \text{Bernoulli}(\theta)$, $\beta_i \mid z_i = 1 \sim \delta_0$ $\beta_i \mid z_i = 0 \sim p_{slab}.$

It is often more conveient to set the spike component as a Gaussian distribution with a very small variance, and the slab component as a Gaussian distribution with a larger variance.

In Sampling from the posterior distribution is often done by Gibbs sampling for (β, z) .

Hierarchical Linear Models

If we have linear regression models for different subsets of data, we may assume that the regression coefficients are drawn from a common distribution.

$$
\bm{y}_i = \bm{X}_i\bm{\beta}_i + \bm{\epsilon}_i
$$

with

$$
\beta_i \sim P, i.i.d.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

where P is common distribution for the linear regression coefficients.

Hierarchical Linear Models

If we have linear regression models for different subsets of data, we may assume that the regression coefficients are drawn from a common distribution.

$$
\bm{y}_i = \bm{X}_i\bm{\beta}_i + \bm{\epsilon}_i
$$

with

$$
\beta_i \sim P, i.i.d.
$$

where P is common distribution for the linear regression coefficients.

- \triangleright When P is Gaussian, the model is also called a random effects model.
- **In Sometimes, only part of the** β_i **are random effects, and the rest are fixed effects** (same for all groups).
- \triangleright If the random effects in above are normal, the model is also called a mixed effects model.

The data contains results from the U.S. presidential elections for all states from 1948 to 1988.

 \triangleright 511 records by removing the District of Columbia and all third-party victories.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \triangleright The response variable is the percentage of votes for the Democratic party.

Previous election results have a strong effect on the current election results.

Some outiliers from the southern states. (Upper left on the second graph)

All covariates used for linear regression:

We compare the values of the test variable $T(y, \theta)$ from the posterior simulations of β to the hypothetical replicated valuesunder the model, $T(\bm{y}^{(rep)},\bm{\theta}).$

The performance is not satisfactory.

Now we consider a hierarchical model for the data.

$$
y_{st} \sim \mathcal{N}(X_{st}\beta + \gamma_{r(s)t} + \delta_t, \sigma^2),
$$

$$
\gamma_{rt} \sim \begin{cases} \mathcal{N}(0, \tau_{\gamma 1}^2) & \text{for } r = 1, 2, 3 \text{ (non-south)}\\ \mathcal{N}(0, \tau_{\gamma 2}^2) & \text{for } r = 4 \text{ (south)} \end{cases}
$$

$$
\delta_t \sim \mathcal{N}(0, \tau_{\delta}^2)
$$

- \blacktriangleright γ_{rt} : different intercepts for different regions.
- \blacktriangleright δ_t : different intercepts for different years.
- \triangleright β dependence on other covariates is assumed to be the same for all regions and years.
- \blacktriangleright Hyperprior for the hyperparameters are set to uniform.

We conduct the Bayesian predictive checks for the hierarchical model.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →