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Sequential Monte Carlo

I Last time, we introduced the state-space models.

I For linear Gaussian state-space models, we can use Kalman filter and smoother to
estimate the latent states and parameters.

I The key idea behind the Kalman filter and smoother is to recursively update the
filtering and smoothing distributions.

I For general state-space models, we usualy do not have closed-form solutions as in
the linear Gaussian case.

I Sequential Monte Carlo (SMC) methods provide a general framework for
estimating the filtering and smoothing distributions in general state-space models
through Monte Carlo sampling.
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The Sequential Structure (MC version)

I In our previous discussion for the Kalman filter and smoother, we have the
following recursive structure:

Xt | Yt ∼ N (µt,Vt) =⇒ Xt+1 | Yt ∼ N (µt+1,Vt+1).

It is a consequence of the fact that (Xt+1, Yt+1) | Xt is multivariate normal.

I (MC version) Similarly, if we have samples (X
(i)
t , w

(i)
t )Ni=1 from the filtering

distribution p(Xt | Yt), we can generate samples from the filtering distribution
p(Xt+1 | Yt+1) by the following steps:

1. Sample X
(i)
t+1 ∼ qt+1(Xt+1) for some proposal distribution qt+1

2. Let X
(i)
t+1 = (X

(i)
t , X

(i)
t+1) and assign weights

w
(i)
t+1 = w

(i)
t

ft+1(X
(i)
t+1 |X

(i)
t )gt+1(Yt+1 | X(i)

t+1)

qt+1(X
(i)
t+1)
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Sequential Importance Sampling (SIS)

1. Initialization:
1.1 Generate N independent samples X

(i)
0 from the proposal distribution q0(X0).

1.2 Assign weights w
(i)
0 ∝ f0(X

(i)
0 )/q0(X

(i)
0 ).

2. Iteration: For t = 1, 2, . . . , T ,

2.1 Sample X
(i)
t ∼ qt(Xt) for i = 1, . . . , N .

2.2 Assign weights

w
(i)
t ∝ w

(i)
t−1

ft(X
(i)
t |X

(i)
t−1)gt(Yt | X

(i)
t )

qt(X
(i)
t )

Then:

I The weighted samples (X
(i)
t , w

(i)
t )Ni=1 are samples from the filtering distribution

p(Xt | Yt).

I The weighted samples (X
(i)
T , w

(i)
T )Ni=1 are samples from the smoothing distribution

p(XT | Y1:T ).
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Justification on the Importance Sampling
I From the principle of impoartance sampling, if X(i) are samples from q(X) and

(X(i), w(i)) are (weighted) samples from the target p(X), then

w(i) ∝ p(X(i))

q(X(i))

I For the SIS algorithm, the sampling distributions for Xt is

q(Xt) = q0(X0)
t∏

s=1

qs(Xs)

I The target filtering distribution is

p(Xt | Yt) ∝ f0(X0)
t∏

s=1

fs(Xs |Xs−1)gs(Ys | Xs)
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Justification on the Importance Sampling
I The proper weight for the i-th sample at time t is

w
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I On the one hand, this is the cumulated product of the importance weights for the
samples up to time t:
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I On the other hand, the sequential update for the weights is
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Different Choices for the Proposal Distribution

I Particle Filter / Bootstrap Filter:

qt(Xt) = ft(Xt |Xt−1)

I Independent Filter:
qt(Xt) ∝ gt(Yt | Xt)

I Conditional Optimal Filter:

qt(Xt) ∝ ft(Xt |Xt−1)gt(Yt | Xt)

I Auxiliary Particle Filter:
qt(Xt) ∝ p(Yt+1 | Xt)



Likelihood Estimation with SIS

Suppose the state-space model dynamics is parametrized by θ and we want to
estimate the likelihood p(Y1:T | θ).

I The likelihood can be written as a high-dimensional integral:

p(YT | θ) =
∫
p(YT ,XT | θ)dXT

=

∫
f0(X0 | θ)

T∏
s=1

fs(Xs |Xs−1;θ)gs(Ys | Xs;θ)dXT

I Directly estimate the likelihood is infeasible due to the high-dimensional integral.
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Likelihood Estimation with SIS

With SIS, we observe that

ESIS

[
wt

wt−1

]
= ESIS

[
ft(Xt |Xt−1;θ)gt(Yt | Xt;θ)

qt(Xt)

]
=

∫
ft(Xt |Xt−1;θ)gt(Yt | Xt;θ)

qt(Xt)
qt(Xt)p(Xt−1 | Yt−1;θ)dXtdXt−1

=

∫
ft(Xt |Xt−1;θ)gt(Yt | Xt;θ)p(Xt−1 | Yt−1;θ)dXtdXt−1

=

∫ (∫
ft(Xt |Xt−1;θ)p(Xt−1 | Yt−1;θ)dXt−1

)
gt(Yt | Xt;θ)dXt

=

∫
p(Xt | Yt−1;θ)gt(Yt | Xt;θ)dXt

= p(Yt | Yt−1;θ)



Likelihood Estimation with SIS
Notice that

p(Yt;θ) =

T∏
s=1

p(Yt | Yt−1;θ)

1. Initialization:
1.1 Set L = 1.
1.2 Generate N independent samples X

(i)
0 from the proposal distribution q0(X0).

1.3 Assign weights w
(i)
0 ∝ f0(X

(i)
0 )/q0(X

(i)
0 ).

2. Iteration: For t = 1, 2, . . . , T ,
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2.3 Update the likelihood estimate

L = L ·
∑N

i=1 w
(i)
t∑N

i=1 w
(i)
t−1
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Example

Consider a simple state-space model with the following dynamics:

Xt | Xt−1 ∼ N (φXt−1, 1)

Yt | Xt ∼ N (Xt, 1)

where φ is the parameter to be estimated.



Example

Simulate data from the model with φ = 0.6.

T = 20
Y = rep(0, T)
X = 0
for(t in 1:T){

X = 0.6 * X + rnorm(1)
Y[t] = X + rnorm(1)

}



Example
Compute the likelihood with SIS:

llh <- function(phi){
n = 1000
x = rep(0, n)
logw = rep(0, n)
loglik = 0
for(t in 1:T){

z = rnorm(n)/sqrt(2)
xx = (phi*x + Y[t])/2 + z
dlogw = -0.5*(xx - phi*x)**2
dlogw = dlogw - 0.5*(Y[t]-xx)**2
dlogw = dlogw + z**2
x = xx
loglik = loglik + log(sum(exp(logw+dlogw)))
loglik = loglik - log(sum(exp(logw)))
logw = logw + dlogw
logw = logw - mean(logw)

}
return(loglik)

}



Example

Compute the MLE:

phi.hat = optimize(llh, c(-1, 1), maximum = T)$maximum

The outcome is φ̂ = 0.61. (The result can be noisy due to the randomness in the SIS
algorithm and lack of resampling.)



Example

Draw samples from the posterios:

smc <- function(phi){
n = 1000
x = array(0, c(n, T+1))
logw = rep(0, n)
for(t in 1:T){

z = rnorm(n)/sqrt(2)
x[,t+1] = (phi*x[,t] + Y[t])/2 + z
dlogw = -0.5*(x[,t+1] - phi*x[,t])**2
dlogw = dlogw - 0.5*(Y[t]-x[,t+1])**2
dlogw = dlogw + z**2
logw = logw + dlogw
logw = logw - mean(logw)

}
return(x)

}



Example



Example



Degeneracy
One of the problem is the degeneracy of the SIS algorithm. The weights of the
particles can be very skewed, leading to poor performance of the algorithm.
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Degeneracy

One way to evaluate the performance of the SIS algorithm is to look at the effective
sample size (ESS):

ESSt =

(∑N
i=1w

(i)
t

)2
∑N

i=1(w
(i)
t )2

I The ESS of the previous example at time T is ∼ 183� 1000.

I If the observation equation is restrictive, the weight adjustedment step can lead to
a large variance in the weights, resulting in a low ESS.

I We refer to the problem of reduced effective sample size as degeneracy.
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Example
For the previous Autoregressive example, if we set T = 100, the ESS is tracked over
time as follows.



Resampling
One way to alleviate the degeneracy problem is to introduce resampling steps in the
SIS algorithm.

I Suppose now we have N = 5 samples at time t:

(X
(1)
t , 0.8), (X

(2)
t , 0.17), (X

(3)
t , 0.01), (X

(4)
t , 0.01), (X

(5)
t , 0.01),

where the second element is the weight.

I Without resampling, the samples at time t+ 1 will be dominated by the first
sample:

(X
(1)
t+1, 0.83), (X

(2)
t+1, 0.14), (X

(3)
t+1, 0.01), (X

(4)
t+1, 0.01), (X

(5)
t+1, 0.01)

I With resampling, we draw N = 5 samples from the current samples with
replacement:

(X
(1)
t , 0.2), (X

(1)
t , 0.2), (X
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t , 0.2), (X
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SIS with Resampling (SISR)

1. Initialization:
1.1 Generate N independent samples X

(i)
0 from the proposal distribution q0(X0).

1.2 Assign weights w
(i)
0 ∝ f0(X

(i)
0 )/q0(X

(i)
0 ).

2. Iteration: For t = 1, 2, . . . , T ,

2.1 Sample X
(i)
t ∼ qt(Xt) for i = 1, . . . , N .

2.2 Assign weights

w
(i)
t = w

(i)
t−1

ft(X
(i)
t |X

(i)
t−1)gt(Yt | X

(i)
t )

qt(X
(i)
t )

2.3 (Optional) Resample N samples from {X(i)
t }Ni=1 with replacement according to the

weights {w(i)
t }Ni=1 and set weights to be ∝ 1.



When to Resample?

I Resampling is a trade-off between the variance reduction and the information loss.

I If the weights are very skewed, resampling can help to reduce the variance of the
weights.

I If the weights are not very skewed, resampling can lead to information loss.

Resampling schedules:

I Deterministic schedule: Resample every K steps.

I Dynamic schedule: Resample when the ESS is below a threshold.
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Example
For the previous Autoregressive example, if we set resample when ESS is below 0.3N ,
the ESS is tracked over time as follows.



Resampling w.r.t. the Priority Scores

I The resampling step can be modified to incorporate the priority scores.

I The priority scores are the weights of the samples in the resampling step.

I The resampling step w.r.t. the priority scores βi is:

1. Draw N samples {j1, . . . , jN} with replacement from {1, . . . , N} with probabilities
(proportional to) {βi}Ni=1.

2. Set the new samples to be {X(j1)
t , . . . , X

(jN )
t }.

3. Set the new weights to be

w(ji) ← w(ji)

βji

I The previous example is a special case with βi = w
(i)
t .

I Least Aggresive Resampling: Set βi =

√
w

(i)
t for all i.
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How to Resample?

I The resampling step can be implemented in different ways.

I Simple Random Resampling: Draw N samples with replacement from
{1, . . . , N} with probabilities {βi}Ni=1.

I Residual Resampling:

1. Retain ki = bNw̃(i) copies of X(i), where w̃(i) = w(i)/
∑

i w
(i).

2. Obtain N −
∑

i ki samples by drawing with replacement from {1, . . . , N} with
probabilities Nw̃(i) − ki.
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Sequential Importance Sampling with Resampling (SISR)

1. Initialization:
1.1 Generate N independent samples X

(i)
0 from the proposal distribution q0(X0).

1.2 Assign weights w
(i)
0 ∝ f0(X

(i)
0 )/q0(X

(i)
0 ).

2. Iteration: For t = 1, 2, . . . , T ,

2.1 Sample X
(i)
t ∼ qt(Xt) for i = 1, . . . , N .

2.2 Assign weights

w
(i)
t = w

(i)
t−1

ft(X
(i)
t |X

(i)
t−1)gt(Yt | X

(i)
t )

qt(X
(i)
t )

2.3 Conduct computation w.r.t. to the filtering sample here.
2.4 (Optional Resampling):

2.4.1 Draw N samples with replacement from {1, . . . , N} with probabilities {βi}Ni=1.

2.4.2 Set the new samples to be {X(j1)
t , . . . ,X

(jN )
t }.

2.4.3 Set the new weights to be

w(ji) ← w(ji)

βji

3. Conduct computation w.r.t. to the smoothing sample here.



Example

We consider the following 1D random walk with noisy observations:

Xt = Xt−1 +N (0, 1)

Yt = Xt +N (0, 1)

The starting point is X0 = 0.



Example

Simulate data from the model:

T = 100
x = cumsum(rnorm(T))
y = x + rnorm(T)



Example

smc <- function(n, y, resample=FALSE){
T = length(y)
X = array(0, dim=c(n, T+1))
logw = rep(0, n)
out.filter = rep(0, T)
ess = rep(n, T)
for(t in 1:T){

z = rnorm(n) / sqrt(2)
X[,t+1] = (X[,t] + y[t]) / 2 + z
logw = logw -0.5*(y[t]-X[,t+1])**2 - 0.5*(X[,t+1]-X[,t])

**2
logw = logw + 0.5*z**2
logw = logw - mean(logw)
w = exp(logw)
w = w / sum(w)
out.filter[t] = X[,t+1]%*%w
ess[t] = sum(w)**2/sum(w**2)



Example

if(resample && ess[t] < 0.3*n){
index = sample(n, n, replace=T, prob=w)
logw = rep(0, n)
X = X[index,]

}
}
w = exp(logw)
w = w / sum(w)
out.smoothing = w%*%X
return(list(filtering=out.filter, smoothing=out.smoothing,

ess=ess))
}


