
STAT 576 Bayesian Analysis

Lecture 11: State-space Models and Sequential Monte Carlo II

Chencheng Cai

Washington State University

Sequential Monte Carlo

I Last time, we introduced the state-space models.

I For linear Gaussian state-space models, we can use Kalman filter and smoother to
estimate the latent states and parameters.

I The key idea behind the Kalman filter and smoother is to recursively update the
filtering and smoothing distributions.

I For general state-space models, we usualy do not have closed-form solutions as in
the linear Gaussian case.

I Sequential Monte Carlo (SMC) methods provide a general framework for
estimating the filtering and smoothing distributions in general state-space models
through Monte Carlo sampling.

Sequential Monte Carlo

I Last time, we introduced the state-space models.

I For linear Gaussian state-space models, we can use Kalman filter and smoother to
estimate the latent states and parameters.

I The key idea behind the Kalman filter and smoother is to recursively update the
filtering and smoothing distributions.

I For general state-space models, we usualy do not have closed-form solutions as in
the linear Gaussian case.

I Sequential Monte Carlo (SMC) methods provide a general framework for
estimating the filtering and smoothing distributions in general state-space models
through Monte Carlo sampling.

Sequential Monte Carlo

I Last time, we introduced the state-space models.

I For linear Gaussian state-space models, we can use Kalman filter and smoother to
estimate the latent states and parameters.

I The key idea behind the Kalman filter and smoother is to recursively update the
filtering and smoothing distributions.

I For general state-space models, we usualy do not have closed-form solutions as in
the linear Gaussian case.

I Sequential Monte Carlo (SMC) methods provide a general framework for
estimating the filtering and smoothing distributions in general state-space models
through Monte Carlo sampling.

The Sequential Structure (MC version)

I In our previous discussion for the Kalman filter and smoother, we have the
following recursive structure:

Xt | Yt ∼ N (µt,Vt) =⇒ Xt+1 | Yt ∼ N (µt+1,Vt+1).

It is a consequence of the fact that (Xt+1, Yt+1) | Xt is multivariate normal.

I (MC version) Similarly, if we have samples (X
(i)
t , w

(i)
t)Ni=1 from the filtering

distribution p(Xt | Yt), we can generate samples from the filtering distribution
p(Xt+1 | Yt+1) by the following steps:

1. Sample X
(i)
t+1 ∼ qt+1(Xt+1) for some proposal distribution qt+1

2. Let X
(i)
t+1 = (X

(i)
t , X

(i)
t+1) and assign weights

w
(i)
t+1 = w

(i)
t

ft+1(X
(i)
t+1 |X

(i)
t)gt+1(Yt+1 | X(i)

t+1)

qt+1(X
(i)
t+1)

The Sequential Structure (MC version)

I In our previous discussion for the Kalman filter and smoother, we have the
following recursive structure:

Xt | Yt ∼ N (µt,Vt) =⇒ Xt+1 | Yt ∼ N (µt+1,Vt+1).

It is a consequence of the fact that (Xt+1, Yt+1) | Xt is multivariate normal.

I (MC version) Similarly, if we have samples (X
(i)
t , w

(i)
t)Ni=1 from the filtering

distribution p(Xt | Yt), we can generate samples from the filtering distribution
p(Xt+1 | Yt+1) by the following steps:

1. Sample X
(i)
t+1 ∼ qt+1(Xt+1) for some proposal distribution qt+1

2. Let X
(i)
t+1 = (X

(i)
t , X

(i)
t+1) and assign weights

w
(i)
t+1 = w

(i)
t

ft+1(X
(i)
t+1 |X

(i)
t)gt+1(Yt+1 | X(i)

t+1)

qt+1(X
(i)
t+1)

The Sequential Structure (MC version)

I In our previous discussion for the Kalman filter and smoother, we have the
following recursive structure:

Xt | Yt ∼ N (µt,Vt) =⇒ Xt+1 | Yt ∼ N (µt+1,Vt+1).

It is a consequence of the fact that (Xt+1, Yt+1) | Xt is multivariate normal.

I (MC version) Similarly, if we have samples (X
(i)
t , w

(i)
t)Ni=1 from the filtering

distribution p(Xt | Yt), we can generate samples from the filtering distribution
p(Xt+1 | Yt+1) by the following steps:

1. Sample X
(i)
t+1 ∼ qt+1(Xt+1) for some proposal distribution qt+1

2. Let X
(i)
t+1 = (X

(i)
t , X

(i)
t+1) and assign weights

w
(i)
t+1 = w

(i)
t

ft+1(X
(i)
t+1 |X

(i)
t)gt+1(Yt+1 | X(i)

t+1)

qt+1(X
(i)
t+1)

Sequential Importance Sampling (SIS)

1. Initialization:
1.1 Generate N independent samples X

(i)
0 from the proposal distribution q0(X0).

1.2 Assign weights w
(i)
0 ∝ f0(X

(i)
0)/q0(X

(i)
0).

2. Iteration: For t = 1, 2, . . . , T ,

2.1 Sample X
(i)
t ∼ qt(Xt) for i = 1, . . . , N .

2.2 Assign weights

w
(i)
t ∝ w

(i)
t−1

ft(X
(i)
t |X

(i)
t−1)gt(Yt | X

(i)
t)

qt(X
(i)
t)

Then:

I The weighted samples (X
(i)
t , w

(i)
t)Ni=1 are samples from the filtering distribution

p(Xt | Yt).

I The weighted samples (X
(i)
T , w

(i)
T)Ni=1 are samples from the smoothing distribution

p(XT | Y1:T).

Sequential Importance Sampling (SIS)

1. Initialization:
1.1 Generate N independent samples X

(i)
0 from the proposal distribution q0(X0).

1.2 Assign weights w
(i)
0 ∝ f0(X

(i)
0)/q0(X

(i)
0).

2. Iteration: For t = 1, 2, . . . , T ,

2.1 Sample X
(i)
t ∼ qt(Xt) for i = 1, . . . , N .

2.2 Assign weights

w
(i)
t ∝ w

(i)
t−1

ft(X
(i)
t |X

(i)
t−1)gt(Yt | X

(i)
t)

qt(X
(i)
t)

Then:

I The weighted samples (X
(i)
t , w

(i)
t)Ni=1 are samples from the filtering distribution

p(Xt | Yt).

I The weighted samples (X
(i)
T , w

(i)
T)Ni=1 are samples from the smoothing distribution

p(XT | Y1:T).

Justification on the Importance Sampling
I From the principle of impoartance sampling, if X(i) are samples from q(X) and

(X(i), w(i)) are (weighted) samples from the target p(X), then

w(i) ∝ p(X(i))

q(X(i))

I For the SIS algorithm, the sampling distributions for Xt is

q(Xt) = q0(X0)
t∏

s=1

qs(Xs)

I The target filtering distribution is

p(Xt | Yt) ∝ f0(X0)
t∏

s=1

fs(Xs |Xs−1)gs(Ys | Xs)

Justification on the Importance Sampling
I From the principle of impoartance sampling, if X(i) are samples from q(X) and

(X(i), w(i)) are (weighted) samples from the target p(X), then

w(i) ∝ p(X(i))

q(X(i))

I For the SIS algorithm, the sampling distributions for Xt is

q(Xt) = q0(X0)

t∏
s=1

qs(Xs)

I The target filtering distribution is

p(Xt | Yt) ∝ f0(X0)
t∏

s=1

fs(Xs |Xs−1)gs(Ys | Xs)

Justification on the Importance Sampling
I From the principle of impoartance sampling, if X(i) are samples from q(X) and

(X(i), w(i)) are (weighted) samples from the target p(X), then

w(i) ∝ p(X(i))

q(X(i))

I For the SIS algorithm, the sampling distributions for Xt is

q(Xt) = q0(X0)

t∏
s=1

qs(Xs)

I The target filtering distribution is

p(Xt | Yt) ∝ f0(X0)

t∏
s=1

fs(Xs |Xs−1)gs(Ys | Xs)

Justification on the Importance Sampling
I The proper weight for the i-th sample at time t is

w
(i)
t ∝

p(X
(i)
t | Yt)

q(X
(i)
t)

∝ q0(X
(i)
0)

f0(X
(i)
0)

t∏
s=1

fs(X
(i)
s |X(i)

s−1)gs(Ys | X
(i)
s)

qs(X
(i)
s)

I On the one hand, this is the cumulated product of the importance weights for the
samples up to time t:

w
(i)
t ∝ w

(i)
0

t∏
s=1

w
(i)
s

w
(i)
s−1

I On the other hand, the sequential update for the weights is

w
(i)
t ∝ w

(i)
t−1

ft(X
(i)
t |X

(i)
t−1)gt(Yt | X

(i)
t)

qt(X
(i)
t)

Justification on the Importance Sampling
I The proper weight for the i-th sample at time t is

w
(i)
t ∝

p(X
(i)
t | Yt)

q(X
(i)
t)

∝ q0(X
(i)
0)

f0(X
(i)
0)

t∏
s=1

fs(X
(i)
s |X(i)

s−1)gs(Ys | X
(i)
s)

qs(X
(i)
s)

I On the one hand, this is the cumulated product of the importance weights for the
samples up to time t:

w
(i)
t ∝ w

(i)
0

t∏
s=1

w
(i)
s

w
(i)
s−1

I On the other hand, the sequential update for the weights is

w
(i)
t ∝ w

(i)
t−1

ft(X
(i)
t |X

(i)
t−1)gt(Yt | X

(i)
t)

qt(X
(i)
t)

Justification on the Importance Sampling
I The proper weight for the i-th sample at time t is

w
(i)
t ∝

p(X
(i)
t | Yt)

q(X
(i)
t)

∝ q0(X
(i)
0)

f0(X
(i)
0)

t∏
s=1

fs(X
(i)
s |X(i)

s−1)gs(Ys | X
(i)
s)

qs(X
(i)
s)

I On the one hand, this is the cumulated product of the importance weights for the
samples up to time t:

w
(i)
t ∝ w

(i)
0

t∏
s=1

w
(i)
s

w
(i)
s−1

I On the other hand, the sequential update for the weights is

w
(i)
t ∝ w

(i)
t−1

ft(X
(i)
t |X

(i)
t−1)gt(Yt | X

(i)
t)

qt(X
(i)
t)

Different Choices for the Proposal Distribution

I Particle Filter / Bootstrap Filter:

qt(Xt) = ft(Xt |Xt−1)

I Independent Filter:
qt(Xt) ∝ gt(Yt | Xt)

I Conditional Optimal Filter:

qt(Xt) ∝ ft(Xt |Xt−1)gt(Yt | Xt)

I Auxiliary Particle Filter:
qt(Xt) ∝ p(Yt+1 | Xt)

Likelihood Estimation with SIS

Suppose the state-space model dynamics is parametrized by θ and we want to
estimate the likelihood p(Y1:T | θ).

I The likelihood can be written as a high-dimensional integral:

p(YT | θ) =
∫
p(YT ,XT | θ)dXT

=

∫
f0(X0 | θ)

T∏
s=1

fs(Xs |Xs−1;θ)gs(Ys | Xs;θ)dXT

I Directly estimate the likelihood is infeasible due to the high-dimensional integral.

Likelihood Estimation with SIS

Suppose the state-space model dynamics is parametrized by θ and we want to
estimate the likelihood p(Y1:T | θ).
I The likelihood can be written as a high-dimensional integral:

p(YT | θ) =
∫
p(YT ,XT | θ)dXT

=

∫
f0(X0 | θ)

T∏
s=1

fs(Xs |Xs−1;θ)gs(Ys | Xs;θ)dXT

I Directly estimate the likelihood is infeasible due to the high-dimensional integral.

Likelihood Estimation with SIS

With SIS, we observe that

ESIS

[
wt

wt−1

]
= ESIS

[
ft(Xt |Xt−1;θ)gt(Yt | Xt;θ)

qt(Xt)

]
=

∫
ft(Xt |Xt−1;θ)gt(Yt | Xt;θ)

qt(Xt)
qt(Xt)p(Xt−1 | Yt−1;θ)dXtdXt−1

=

∫
ft(Xt |Xt−1;θ)gt(Yt | Xt;θ)p(Xt−1 | Yt−1;θ)dXtdXt−1

=

∫ (∫
ft(Xt |Xt−1;θ)p(Xt−1 | Yt−1;θ)dXt−1

)
gt(Yt | Xt;θ)dXt

=

∫
p(Xt | Yt−1;θ)gt(Yt | Xt;θ)dXt

= p(Yt | Yt−1;θ)

Likelihood Estimation with SIS
Notice that

p(Yt;θ) =

T∏
s=1

p(Yt | Yt−1;θ)

1. Initialization:
1.1 Set L = 1.
1.2 Generate N independent samples X

(i)
0 from the proposal distribution q0(X0).

1.3 Assign weights w
(i)
0 ∝ f0(X

(i)
0)/q0(X

(i)
0).

2. Iteration: For t = 1, 2, . . . , T ,
2.1 Sample X

(i)
t ∼ qt(Xt) for i = 1, . . . , N .

2.2 Assign weights

w
(i)
t = w

(i)
t−1

ft(X
(i)
t |X

(i)
t−1)gt(Yt | X

(i)
t)

qt(X
(i)
t)

2.3 Update the likelihood estimate

L = L ·
∑N

i=1 w
(i)
t∑N

i=1 w
(i)
t−1

Likelihood Estimation with SIS
Notice that

p(Yt;θ) =

T∏
s=1

p(Yt | Yt−1;θ)

1. Initialization:
1.1 Set L = 1.
1.2 Generate N independent samples X

(i)
0 from the proposal distribution q0(X0).

1.3 Assign weights w
(i)
0 ∝ f0(X

(i)
0)/q0(X

(i)
0).

2. Iteration: For t = 1, 2, . . . , T ,
2.1 Sample X

(i)
t ∼ qt(Xt) for i = 1, . . . , N .

2.2 Assign weights

w
(i)
t = w

(i)
t−1

ft(X
(i)
t |X

(i)
t−1)gt(Yt | X

(i)
t)

qt(X
(i)
t)

2.3 Update the likelihood estimate

L = L ·
∑N

i=1 w
(i)
t∑N

i=1 w
(i)
t−1

Example

Consider a simple state-space model with the following dynamics:

Xt | Xt−1 ∼ N (φXt−1, 1)

Yt | Xt ∼ N (Xt, 1)

where φ is the parameter to be estimated.

Example

Simulate data from the model with φ = 0.6.

T = 20
Y = rep(0, T)
X = 0
for(t in 1:T){

X = 0.6 * X + rnorm(1)
Y[t] = X + rnorm(1)

}

Example
Compute the likelihood with SIS:

llh <- function(phi){
n = 1000
x = rep(0, n)
logw = rep(0, n)
loglik = 0
for(t in 1:T){

z = rnorm(n)/sqrt(2)
xx = (phi*x + Y[t])/2 + z
dlogw = -0.5*(xx - phi*x)**2
dlogw = dlogw - 0.5*(Y[t]-xx)**2
dlogw = dlogw + z**2
x = xx
loglik = loglik + log(sum(exp(logw+dlogw)))
loglik = loglik - log(sum(exp(logw)))
logw = logw + dlogw
logw = logw - mean(logw)

}
return(loglik)

}

Example

Compute the MLE:

phi.hat = optimize(llh, c(-1, 1), maximum = T)$maximum

The outcome is φ̂ = 0.61. (The result can be noisy due to the randomness in the SIS
algorithm and lack of resampling.)

Example

Draw samples from the posterios:

smc <- function(phi){
n = 1000
x = array(0, c(n, T+1))
logw = rep(0, n)
for(t in 1:T){

z = rnorm(n)/sqrt(2)
x[,t+1] = (phi*x[,t] + Y[t])/2 + z
dlogw = -0.5*(x[,t+1] - phi*x[,t])**2
dlogw = dlogw - 0.5*(Y[t]-x[,t+1])**2
dlogw = dlogw + z**2
logw = logw + dlogw
logw = logw - mean(logw)

}
return(x)

}

Example

Example

Degeneracy
One of the problem is the degeneracy of the SIS algorithm. The weights of the
particles can be very skewed, leading to poor performance of the algorithm.

Degeneracy
One of the problem is the degeneracy of the SIS algorithm. The weights of the
particles can be very skewed, leading to poor performance of the algorithm.

Degeneracy

One way to evaluate the performance of the SIS algorithm is to look at the effective
sample size (ESS):

ESSt =

(∑N
i=1w

(i)
t

)2
∑N

i=1(w
(i)
t)2

I The ESS of the previous example at time T is ∼ 183� 1000.

I If the observation equation is restrictive, the weight adjustedment step can lead to
a large variance in the weights, resulting in a low ESS.

I We refer to the problem of reduced effective sample size as degeneracy.

Degeneracy

One way to evaluate the performance of the SIS algorithm is to look at the effective
sample size (ESS):

ESSt =

(∑N
i=1w

(i)
t

)2
∑N

i=1(w
(i)
t)2

I The ESS of the previous example at time T is ∼ 183� 1000.

I If the observation equation is restrictive, the weight adjustedment step can lead to
a large variance in the weights, resulting in a low ESS.

I We refer to the problem of reduced effective sample size as degeneracy.

Degeneracy

One way to evaluate the performance of the SIS algorithm is to look at the effective
sample size (ESS):

ESSt =

(∑N
i=1w

(i)
t

)2
∑N

i=1(w
(i)
t)2

I The ESS of the previous example at time T is ∼ 183� 1000.

I If the observation equation is restrictive, the weight adjustedment step can lead to
a large variance in the weights, resulting in a low ESS.

I We refer to the problem of reduced effective sample size as degeneracy.

Degeneracy

One way to evaluate the performance of the SIS algorithm is to look at the effective
sample size (ESS):

ESSt =

(∑N
i=1w

(i)
t

)2
∑N

i=1(w
(i)
t)2

I The ESS of the previous example at time T is ∼ 183� 1000.

I If the observation equation is restrictive, the weight adjustedment step can lead to
a large variance in the weights, resulting in a low ESS.

I We refer to the problem of reduced effective sample size as degeneracy.

Example
For the previous Autoregressive example, if we set T = 100, the ESS is tracked over
time as follows.

Resampling
One way to alleviate the degeneracy problem is to introduce resampling steps in the
SIS algorithm.

I Suppose now we have N = 5 samples at time t:

(X
(1)
t , 0.8), (X

(2)
t , 0.17), (X

(3)
t , 0.01), (X

(4)
t , 0.01), (X

(5)
t , 0.01),

where the second element is the weight.

I Without resampling, the samples at time t+ 1 will be dominated by the first
sample:

(X
(1)
t+1, 0.83), (X

(2)
t+1, 0.14), (X

(3)
t+1, 0.01), (X

(4)
t+1, 0.01), (X

(5)
t+1, 0.01)

I With resampling, we draw N = 5 samples from the current samples with
replacement:

(X
(1)
t , 0.2), (X

(1)
t , 0.2), (X

(1)
t , 0.2), (X

(1)
t , 0.2), (X

(2)
t , 0.2),

Resampling
One way to alleviate the degeneracy problem is to introduce resampling steps in the
SIS algorithm.

I Suppose now we have N = 5 samples at time t:

(X
(1)
t , 0.8), (X

(2)
t , 0.17), (X

(3)
t , 0.01), (X

(4)
t , 0.01), (X

(5)
t , 0.01),

where the second element is the weight.

I Without resampling, the samples at time t+ 1 will be dominated by the first
sample:

(X
(1)
t+1, 0.83), (X

(2)
t+1, 0.14), (X

(3)
t+1, 0.01), (X

(4)
t+1, 0.01), (X

(5)
t+1, 0.01)

I With resampling, we draw N = 5 samples from the current samples with
replacement:

(X
(1)
t , 0.2), (X

(1)
t , 0.2), (X

(1)
t , 0.2), (X

(1)
t , 0.2), (X

(2)
t , 0.2),

Resampling
One way to alleviate the degeneracy problem is to introduce resampling steps in the
SIS algorithm.

I Suppose now we have N = 5 samples at time t:

(X
(1)
t , 0.8), (X

(2)
t , 0.17), (X

(3)
t , 0.01), (X

(4)
t , 0.01), (X

(5)
t , 0.01),

where the second element is the weight.

I Without resampling, the samples at time t+ 1 will be dominated by the first
sample:

(X
(1)
t+1, 0.83), (X

(2)
t+1, 0.14), (X

(3)
t+1, 0.01), (X

(4)
t+1, 0.01), (X

(5)
t+1, 0.01)

I With resampling, we draw N = 5 samples from the current samples with
replacement:

(X
(1)
t , 0.2), (X

(1)
t , 0.2), (X

(1)
t , 0.2), (X

(1)
t , 0.2), (X

(2)
t , 0.2),

Resampling
One way to alleviate the degeneracy problem is to introduce resampling steps in the
SIS algorithm.

I Suppose now we have N = 5 samples at time t:

(X
(1)
t , 0.8), (X

(2)
t , 0.17), (X

(3)
t , 0.01), (X

(4)
t , 0.01), (X

(5)
t , 0.01),

where the second element is the weight.

I Without resampling, the samples at time t+ 1 will be dominated by the first
sample:

(X
(1)
t+1, 0.83), (X

(2)
t+1, 0.14), (X

(3)
t+1, 0.01), (X

(4)
t+1, 0.01), (X

(5)
t+1, 0.01)

I With resampling, we draw N = 5 samples from the current samples with
replacement:

(X
(1)
t , 0.2), (X

(1)
t , 0.2), (X

(1)
t , 0.2), (X

(1)
t , 0.2), (X

(2)
t , 0.2),

SIS with Resampling (SISR)

1. Initialization:
1.1 Generate N independent samples X

(i)
0 from the proposal distribution q0(X0).

1.2 Assign weights w
(i)
0 ∝ f0(X

(i)
0)/q0(X

(i)
0).

2. Iteration: For t = 1, 2, . . . , T ,

2.1 Sample X
(i)
t ∼ qt(Xt) for i = 1, . . . , N .

2.2 Assign weights

w
(i)
t = w

(i)
t−1

ft(X
(i)
t |X

(i)
t−1)gt(Yt | X

(i)
t)

qt(X
(i)
t)

2.3 (Optional) Resample N samples from {X(i)
t }Ni=1 with replacement according to the

weights {w(i)
t }Ni=1 and set weights to be ∝ 1.

When to Resample?

I Resampling is a trade-off between the variance reduction and the information loss.

I If the weights are very skewed, resampling can help to reduce the variance of the
weights.

I If the weights are not very skewed, resampling can lead to information loss.

Resampling schedules:

I Deterministic schedule: Resample every K steps.

I Dynamic schedule: Resample when the ESS is below a threshold.

When to Resample?

I Resampling is a trade-off between the variance reduction and the information loss.

I If the weights are very skewed, resampling can help to reduce the variance of the
weights.

I If the weights are not very skewed, resampling can lead to information loss.

Resampling schedules:

I Deterministic schedule: Resample every K steps.

I Dynamic schedule: Resample when the ESS is below a threshold.

Example
For the previous Autoregressive example, if we set resample when ESS is below 0.3N ,
the ESS is tracked over time as follows.

Resampling w.r.t. the Priority Scores

I The resampling step can be modified to incorporate the priority scores.

I The priority scores are the weights of the samples in the resampling step.

I The resampling step w.r.t. the priority scores βi is:

1. Draw N samples {j1, . . . , jN} with replacement from {1, . . . , N} with probabilities
(proportional to) {βi}Ni=1.

2. Set the new samples to be {X(j1)
t , . . . , X

(jN)
t }.

3. Set the new weights to be

w(ji) ← w(ji)

βji

I The previous example is a special case with βi = w
(i)
t .

I Least Aggresive Resampling: Set βi =

√
w

(i)
t for all i.

Resampling w.r.t. the Priority Scores

I The resampling step can be modified to incorporate the priority scores.

I The priority scores are the weights of the samples in the resampling step.
I The resampling step w.r.t. the priority scores βi is:

1. Draw N samples {j1, . . . , jN} with replacement from {1, . . . , N} with probabilities
(proportional to) {βi}Ni=1.

2. Set the new samples to be {X(j1)
t , . . . , X

(jN)
t }.

3. Set the new weights to be

w(ji) ← w(ji)

βji

I The previous example is a special case with βi = w
(i)
t .

I Least Aggresive Resampling: Set βi =

√
w

(i)
t for all i.

Resampling w.r.t. the Priority Scores

I The resampling step can be modified to incorporate the priority scores.

I The priority scores are the weights of the samples in the resampling step.
I The resampling step w.r.t. the priority scores βi is:

1. Draw N samples {j1, . . . , jN} with replacement from {1, . . . , N} with probabilities
(proportional to) {βi}Ni=1.

2. Set the new samples to be {X(j1)
t , . . . , X

(jN)
t }.

3. Set the new weights to be

w(ji) ← w(ji)

βji

I The previous example is a special case with βi = w
(i)
t .

I Least Aggresive Resampling: Set βi =

√
w

(i)
t for all i.

How to Resample?

I The resampling step can be implemented in different ways.

I Simple Random Resampling: Draw N samples with replacement from
{1, . . . , N} with probabilities {βi}Ni=1.

I Residual Resampling:

1. Retain ki = bNw̃(i) copies of X(i), where w̃(i) = w(i)/
∑

i w
(i).

2. Obtain N −
∑

i ki samples by drawing with replacement from {1, . . . , N} with
probabilities Nw̃(i) − ki.

How to Resample?

I The resampling step can be implemented in different ways.

I Simple Random Resampling: Draw N samples with replacement from
{1, . . . , N} with probabilities {βi}Ni=1.

I Residual Resampling:

1. Retain ki = bNw̃(i) copies of X(i), where w̃(i) = w(i)/
∑

i w
(i).

2. Obtain N −
∑

i ki samples by drawing with replacement from {1, . . . , N} with
probabilities Nw̃(i) − ki.

How to Resample?

I The resampling step can be implemented in different ways.

I Simple Random Resampling: Draw N samples with replacement from
{1, . . . , N} with probabilities {βi}Ni=1.

I Residual Resampling:

1. Retain ki = bNw̃(i) copies of X(i), where w̃(i) = w(i)/
∑

i w
(i).

2. Obtain N −
∑

i ki samples by drawing with replacement from {1, . . . , N} with
probabilities Nw̃(i) − ki.

Sequential Importance Sampling with Resampling (SISR)

1. Initialization:
1.1 Generate N independent samples X

(i)
0 from the proposal distribution q0(X0).

1.2 Assign weights w
(i)
0 ∝ f0(X

(i)
0)/q0(X

(i)
0).

2. Iteration: For t = 1, 2, . . . , T ,

2.1 Sample X
(i)
t ∼ qt(Xt) for i = 1, . . . , N .

2.2 Assign weights

w
(i)
t = w

(i)
t−1

ft(X
(i)
t |X

(i)
t−1)gt(Yt | X

(i)
t)

qt(X
(i)
t)

2.3 Conduct computation w.r.t. to the filtering sample here.
2.4 (Optional Resampling):

2.4.1 Draw N samples with replacement from {1, . . . , N} with probabilities {βi}Ni=1.

2.4.2 Set the new samples to be {X(j1)
t , . . . ,X

(jN)
t }.

2.4.3 Set the new weights to be

w(ji) ← w(ji)

βji

3. Conduct computation w.r.t. to the smoothing sample here.

Example

We consider the following 1D random walk with noisy observations:

Xt = Xt−1 +N (0, 1)

Yt = Xt +N (0, 1)

The starting point is X0 = 0.

Example

Simulate data from the model:

T = 100
x = cumsum(rnorm(T))
y = x + rnorm(T)

Example

smc <- function(n, y, resample=FALSE){
T = length(y)
X = array(0, dim=c(n, T+1))
logw = rep(0, n)
out.filter = rep(0, T)
ess = rep(n, T)
for(t in 1:T){

z = rnorm(n) / sqrt(2)
X[,t+1] = (X[,t] + y[t]) / 2 + z
logw = logw -0.5*(y[t]-X[,t+1])**2 - 0.5*(X[,t+1]-X[,t])

**2
logw = logw + 0.5*z**2
logw = logw - mean(logw)
w = exp(logw)
w = w / sum(w)
out.filter[t] = X[,t+1]%*%w
ess[t] = sum(w)**2/sum(w**2)

Example

if(resample && ess[t] < 0.3*n){
index = sample(n, n, replace=T, prob=w)
logw = rep(0, n)
X = X[index,]

}
}
w = exp(logw)
w = w / sum(w)
out.smoothing = w%*%X
return(list(filtering=out.filter, smoothing=out.smoothing,

ess=ess))
}

