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State-space Models

The state-space model is a general framework for modeling time series data. It
consists of two components:

I The state equation: describes the evolution of the latent state variables over
time.

I The observation equation: describes the relationship between the latent state
variables and the observed data.

I The state-space model is also known as the hidden Markov model (HMM)
when the state space is finite and the process is Markovian.



State-space Models
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I Observed data: Y = (Y1, . . . , YT )

I Latent states: X = (X0, X1, . . . , XT )

I The state equation:

p(X0) = f0(X0), p(Xt |Xt−1) = ft(Xt |Xt−1)

I The observation equation:

p(Yt |Xt) = gt(Yt | Xt)



State-space Model

I If the state equation satisfies

p(Xt |Xt−1) = p(Xt | Xt−1)

then the state-space model is Markovian.

I The (Markovian) state-space model is linear if

E[Xt | Xt−1] = AtXt−1

and
E[Yt | Xt] = BtXt,

for some matrices At and Bt.

I The (Markovian) state-space model is linear Gaussian if

Xt | Xt−1 ∼ N (AtXt−1,Σt) and Yt | Xt ∼ N (AtXt,Rt)



Example: Object Tracking

I Consider the problem that tracks the position of an object moving in a 2D plane.

I The data contains the observed positions (with noise) of the object at different
time points. Yt = (at, bt)

T .

I We can assume the latent states Xt = (xt, yt), the true positions of the object.

I The observation equation is
Yt = Xt + εt

where εt ∼ N (0,R). R is the accuracy of the sensor.

I For the latent states Xt, we can assume a linear Gaussian model (random walk):

Xt = Xt−1 + ηt,

where ηt ∼ N (0,Σ) and Σ is the process noise.



Example: Object Tracking
The previous model has a continuous path, but quite stochastic velocities. We can add
a velocity component to the model to stablize the dynamics.

I The latent states Xt = (xt, yt, vt, ut), where (xt, yt) is the position and (vt, ut) is
the velocity.

I The observation equation is

Yt = (xt, yt)
T + εt

where εt ∼ N (0,R).

I The state equation is

xt = xt−1 + vt−1

yt = yt−1 + ut−1

vt = vt−1 + ηt

ut = ut−1 + ξt,

where ηt, ξt ∼ N (0, σ2).



Example: Object Tracking
The previous model is a linear Gaussian model. We can write it in the matrix form:

Xt = AXt−1 + ηt

Yt = BXt + εt,

where

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


B =

(
1 0 0 0
0 1 0 0

)
εt ∼ N (0,R)

ηt ∼ N (0,Σ).



The Probabilities
The state-space model is a full probabilistic model.

I The joint distribution of the latent states and the observed data is

p(X,Y ) = p(X0)

T∏
t=1

p(Xt |Xt−1)p(Yt | Xt) = f0(X0)

T∏
t=1

ft(Xt |Xt−1)gt(Yt | Xt)

I The joint distribution of the latent states is

p(X) = p(X0)

T∏
t=1

p(Xt |Xt−1) = f0(X0)

T∏
t=1

ft(Xt |Xt−1)

I The joint distribution of the observed data is

p(Y ) =

∫
p(X,Y ) dX =

∫
f0(X0)

T∏
t=1

ft(Xt |Xt−1)gt(Yt | Xt)dX



Bayesian Framework

I The prior:

p(X) = f0(X0)

T∏
t=1

ft(Xt |Xt−1)

I The likelihood:

p(Y |X) =

T∏
t=1

gt(Yt | Xt)

I The posterior:

p(X | Y ) =
p(X,Y )

p(Y )
∝ p(X,Y ) = f0(X0)

T∏
t=1

ft(Xt |Xt−1)gt(Yt | Xt)

Direct sampling from this posterior distribution can be difficult. We need to utilize
the sequential structure of the model.



The Sequential Structure
Suppose we are at time t.
I We have observed data Y1, . . . , Yt.
I We have the latent states X0, . . . , Xt.
I The sequential joint prior for the latent states is

p(Xt) = ft(X0)

t∏
s=1

fs(Xs |Xs−1)

I The sequential likelihood for the observed data (so far) is

p(Yt |Xt) =

t∏
s=1

gt(Yt | Xt)

I The sequential posterior for the latent states up to time t is (also called the
filtering distribution)

p(Xt | Yt) ∝ ft(X0)

t∏
s=1

fs(Xs |Xs−1)gt(Yt | Xt)



The Sequential Structure
At time t,
I The predictive distribution for the latent state at time t+ 1 is

p(Xt+1 | Yt) =

∫
p(Xt+1 | Xt)p(Xt | Yt) dXt

I The joint distribution of the latent states up to time t+ 1 is

p(Xt+1 | Yt) = p(Xt+1 | Yt)p(Xt | Yt)

∝ ft+1(Xt+1 |Xt)f0(X0)

t∏
s=1

fs(Xs |Xs−1)gt(Yt | Xt)

I The incremental likelihood for the observed data at time t+ 1 is

p(Yt+1 |Xt+1) = gt+1(Yt+1 | Xt+1)

I The filtering distribution for the latent states up to time t+ 1 is

p(Xt+1 | Yt+1) ∝ p(Yt+1 |Xt)p(Xt | Yt) ∝ f0(X0)

t+1∏
s=1

fs(Xs |Xs−1)gt(Yt | Xt)



The Sequential Structure
The sequential structure of the state-space model allows us to update the latent states
one by one.

I p(Xt+1 | Yt) is the prior

I p(Yt+1 | Xt+1) is the likelihood

I p(Xt+1 | Yt+1) is the posterior

A rudiment of sequential Monte Carlo:

I If we have a sample from Xt | Yt.

I We can draw a sample from Xt+1 | Yt by drawing Xt+1 from p(Xt+1 |Xt).

I We can update the sample to Xt+1 | Yt+1 by adjusting its weight according
p(Yt+1 | Xt+1).

Remark:

I The distribution p(Xt | Yt) is called the filtering distribution.

I The distribution p(Xt | Y ) is called the smoothing distribution.



Multivariate Normal Distribution

I The vector X ∼ N (µ,Σ) if its density is

f(x) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

I The vector X is multivariate normal if and only if every linear combination of its
components is normally distributed.

I If X ∼ N (µ,Σ), then AX + b ∼ N (Aµ+ b,AΣAT ).

I Marginally normal does not imply jointly normal:

X1 ∼ N (0, 1), X2 = sX1

where s is a Rademacher random variable.



Multivariate Normal Distribution

Suppose (
X1

X2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
Then the conditional distribution of X1 given X2 is

X1 |X2 ∼ N
(
µ1 + Σ12Σ

−1
22 (X2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21

)



Multivariate Normal Distribution

Proof 1:
The joint density of X1 and X2 is

p(x1,x2)

∝ exp

(
−1

2

(
x1 − µ1

x2 − µ2

)T (
Σ11 Σ12

Σ21 Σ22

)−1(
x1 − µ1

x2 − µ2

))

∝x1 exp

(
− 1

2
(x1 − µ1)

T (Σ11 −Σ12Σ22Σ21)
−1 (x1 − µ1)

+ (x1 − µ1)
T
(
Σ11 −Σ12Σ

−1
22 Σ21

)−1
Σ12Σ

−1
22 (x2 − µ2)

)
The conditional distribution of X1 given X2 is

X1 |X2 ∼ N
(
µ1 + Σ12Σ

−1
22 (X2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21

)



Multivariate Normal Distribution

Proof 2:
Construct (

Y1

Y2

)
=

(
I −Σ12Σ

−1
22

0 I

)(
X1

X2

)
=

(
X1 −Σ12Σ

−1
22X2

X2

)
Since Y1 and Y2 are linear combinations of X1 and X2, they are jointly normal:(

Y1

Y2

)
∼ N

((
µ1 −Σ12Σ

−1
22 µ2

µ2

)
,

(
Σ11 −Σ12Σ

−1
22 Σ21 0

0 Σ22

))
Therefore, both Y1 and Y2 are normal and they are independent. And

X1 |X2 = (Y1+Σ12Σ
−1
22 Y2) | Y2 ∼ N

(
µ1 + Σ12Σ

−1
22 (X2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21

)



Sequential Structure Under Linear Gaussian Models

Consider the following linear Gaussian state-space model:

Xt | Xt−1 ∼ N (AtXt−1,Σt)

Yt | Xt ∼ N (BtXt,Rt)

Or, in a constructive way,

Xt = AtXt−1 + εt

Yt = BtXt + ηt.

with εt ∼ N (0,Σt) and ηt ∼ N (0,Rt).



Sequential Structure Under Linear Gaussian Models
Notice that (

Xt

Yt

)
=

(
At Ix 0
BtAt Bt Iy

)Xt−1

εt
ηt


If Xt−1 ∼ N (µt−1,Vt−1), then(
Xt

Yt

)
∼ N

((
Atµt−1

BtAtµt−1

)
,

(
AtVt−1A

T
t + Σt AtVt−1A

T
t B

T
t + ΣtB

T
t

BtAtVt−1A
T
t +BtΣt BtAtVt−1A

T
t B

T
t +BtΣtB

T
t +Rt

))
Using the conditional probability of multivariate normal distribution, we have

Xt | Yt ∼ N (µt,Vt)

with

µt =

Aµt−1 + (AtVt−1A
T
t + Σt)B

T
t (BtAtVt−1A

T
t B

T
t +BtΣtB

T
t +Rt)

−1(Yt −BtAtµt−1)

Vt = AtVt−1A
T
t + Σt

− (AtVt−1A
T
t + Σt)B

T
t (BtAtVt−1A

T
t B

T
t +BtΣtB

T
t +Rt)

−1Bt(AtVt−1A
T
t + Σt)



Sequential Structure Under Linear Gaussian Models

A simplified version of the previous formula:

I If Xt−1 ∼ N (µt−1,Vt−1), then

I Xt | Yt ∼ N (µt,Vt)

I with

Qt = AtVt−1A
T
t + Σt

Kt = BtQtB
T
t +Rt

µt = Atµt−1 +QtB
T
t K

−1
t (Yt −BtAtµt−1)

Vt = Qt −QtB
T
t K

−1
t BtQt



Kalman Filter
Consider the following linear Gaussian state-space model:

Xt | Xt−1 ∼ N (AtXt−1,Σt)

Yt | Xt ∼ N (BtXt,Rt)

with X0 ∼ N (µ0,V0).
The Kalman filter is a recursive algorithm to compute the filtering distribution
Xt | Yt ∼ N (µt,Vt):

1. for t = 1, 2, . . . , T :

2. Compute

Qt = AtVt−1A
T
t + Σt

Kt = BtQtB
T
t +Rt

µt = Atµt−1 +QtB
T
t K

−1
t (Yt −BtAtµt−1)

Vt = Qt −QtB
T
t K

−1
t BtQt



The Smoothing Problem

Now we consider the smoothing problem, that is, to find the smoothing distribution
Xt | YT .
From the previous calculation, we have(

Xt

Xt+1

)∣∣∣∣ Yt ∼ N
((

µt

At+1µt

)
,

(
Vt VtA

T
t+1

At+1Vt Qt+1

))
Using the conditional probability of multivariate normal distribution, we have

Xt | Xt+1,Yt ∼ N
(
µt + VtA

T
t+1Q

−1
t+1(Xt+1 −At+1µt),Vt − VtA

T
t+1Q

−1
t+1At+1Vt

)
In the smoothing case, we assume Xt | YT ∼ N (νt,Ut).



The Smoothing Problem

Using the law of total expectation, we have

νt = E[Xt | YT ]

= E[E[Xt | Xt+1,YT ] | YT ]

= E[E[Xt | Xt+1,Yt] | YT ]

= E[µt + VtA
T
t+1Q

−1
t+1(Xt+1 −At+1µt) | YT ]

= µt + VtA
T
t+1Q

−1
t+1(νt+1 −At+1µt)



The Smoothing Problem

Using the law of total variance, we have

Ut = Var[Xt | YT ]

= E[Var[Xt | Xt+1,YT ] | YT ] + Var[E[Xt | Xt+1,YT ] | YT ]

= E[Var[Xt | Xt+1,Yt] | YT ] + Var[E[Xt | Xt+1,Yt] | YT ]

= E[Vt − VtA
T
t+1Q

−1
t+1At+1Vt | YT ] + Var[µt + VtA

T
t+1Q

−1
t+1(Xt+1 −At+1µt) | YT ]

= Vt − VtA
T
t+1Q

−1
t+1At+1Vt + VtA

T
t+1Q

−1
t+1Ut+1Q

−1
t+1At+1Vt

= Vt + VtA
T
t+1Q

−1
t+1(Ut+1 −Qt+1)Q

−1
t+1At+1Vt



The Smoothing Problem

In summary, if we know Xt+1 | YT ∼ N (νt+1,Ut+1), then

Xt | YT ∼ N (νt,Ut)

with

νt = µt + VtA
T
t+1Q

−1
t+1(νt+1 −At+1µt)

Ut = Vt + VtA
T
t+1Q

−1
t+1(Ut+1 −Qt+1)Q

−1
t+1At+1Vt



Kalman Smoother

The Kalman Smoother is a recursive algorithm to compute the smoothing
distribution Xt | YT ∼ N (νt,Ut):

1. Run the Kalman filter.

2. Initialize νT = µT and UT = VT .

3. for t = T − 1, T − 2, . . . , 1:

4. Compute

Ct = VtA
T
t+1Q

−1
t+1

νt = µt +Ct(νt+1 −At+1µt)

Ut = Vt +Ct(Ut+1 −Qt+1)C
T
t



Example: Object Tracking

Xt = AXt−1 + ηt

Yt = BXt + εt,

where

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


B =

(
1 0 0 0
0 1 0 0

)
εt ∼ N (0,R)

ηt ∼ N (0,Σ).

with Σ = diag(0.3, 0.3, 0.5, 0.5) and R = diag(10, 10).



Example: Object Tracking

A = diag(4)
A[1, 3] = 1
A[2, 4] = 1
B = matrix(0, nrow=2, ncol=4)
B[1, 1] = 1
B[2, 2] = 1

Sigma = diag(c(0,3, 0.3, 0.5, 0.5))
R = diag(c(10, 10))

T = 100
Y = array(0, dim=c(2, T))
X = c(0, 0, 0, 0)
for(t in 1:T){

X = A%*%X + sqrt(Sigma) %*% rnorm(4)
Y[,t] = B%*%X + sqrt(R) %*% rnorm(2)

}



Example: Object Tracking



Example: Object Tracking

mu = array(0, dim=c(4, T+1))
V = array(0, dim=c(4, 4, T+1))
Q = array(0, dim=c(4, 4, T+1))
for(t in 1:T){

Q[,,t+1] = A%*%V[,,t]%*%t(A) + Sigma
K = B%*%Q[,,t+1]%*%t(B) + R
mu[,t+1] = A%*%mu[,t] + Q[,,t+1]%*%t(B)%*%solve(K)%*%(Y[,t] - B%*%A%*

%mu[,t])
V[,,t+1] = Q[,,t+1] - Q[,,t+1]%*%t(B)%*%solve(K)%*%B%*%Q[,,t+1]

}



Example: Object Tracking



Example: Object Tracking

nu = array(0, dim=c(4, T))
U = array(0, dim=c(4, 4, T))
nu[,T] = mu[,T+1]
U[,,T] = V[,,T+1]
for(t in (T-1):1){

C = V[,,t+1]%*%t(A)%*%solve(Q[,,t+2])
nu[,t] = mu[, t+1] + C%*%(nu[,t+1] - A%*%mu[,t+1])
U[,,t] = V[,,t+1] + C%*%(U[,,t+1] - Q[,,t+2])%*%t(C)

}



Example: Object Tracking



Example: Object Tracking


