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State-space Models

The state-space model is a general framework for modeling time series data. It
consists of two components:
» The state equation: describes the evolution of the latent state variables over
time.
> The observation equation: describes the relationship between the latent state
variables and the observed data.
» The state-space model is also known as the hidden Markov model (HMM)
when the state space is finite and the process is Markovian.



State-space Models
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» Observed data: Y = (Y3,...,Yr)
» Latent states: X = (Xo, X1,...,X7)
» The state equation:

p(Xo) = fo(Xo), p(Xi| Xi—1) = fi( X | Xi—1)

» The observation equation:

p(Yi | Xi) = g:(V2 | Xi)



State-space Model

P If the state equation satisfies
p(Xt | Xio1) = p(Xi | Xi-1)

then the state-space model is Markovian.

» The (Markovian) state-space model is linear if
E[X: | Xi1] = A Xy

and
EY; | Xi] = B: Xy,

for some matrices A; and B;.

» The (Markovian) state-space model is linear Gaussian if

Xt ‘ Xt,1 ~ N(Atthla Et) and Y}/ | Xt ~ N(AtXt,Rt)



Example: Object Tracking

>
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Consider the problem that tracks the position of an object moving in a 2D plane.
The data contains the observed positions (with noise) of the object at different
time points. Y; = (ag, b)7.
We can assume the latent states X; = (x4, y:), the true positions of the object.
The observation equation is

Vi=Xi+e
where ¢, ~ N (0, R). R is the accuracy of the sensor.

For the latent states X}, we can assume a linear Gaussian model (random walk):
Xe = Xe1+ 1,

where 7y ~ N (0,X) and X is the process noise.



Example: Object Tracking
The previous model has a continuous path, but quite stochastic velocities. We can add
a velocity component to the model to stablize the dynamics.

» The latent states X; = (¢, Y, v¢, ur), where (24, y:) is the position and (v, uy) is
the velocity.
» The observation equation is

Y = (ze,y0)" + e
where ¢, ~ N(0, R).

» The state equation is
Tt = Ty—1 + V-1
Yt = Yt—1 + Ut—1
Vp = V-1 + M

up = ug—1 + &,

where 1, & ~ N(0,02).



Example: Object Tracking

The previous model is a linear Gaussian model. We can write it in the matrix form:

Xi=AXy 1+

Yi:BXt“‘etv
where
1 01 0
01 01
A= 00 10
00 01
1 0 0O
B‘(o 10 0)
EtNN(O,R)
UtNN(QE)



The Probabilities

The state-space model is a full probabilistic model.
» The joint distribution of the latent states and the observed data is

T T
p(X,Y) = p(Xo) [T p(Xe | Xe-)p(Yi | X2) = fo(Xo) [T fe(Xe | Xem1)ge(Ye | Xo)
t=1 t=1

» The joint distribution of the latent states is

T T
p(X) IP(XO)HP(Xt | Xi-1) = fo(Xo) H fe(Xe | Xi—1)
t=1 =1

» The joint distribution of the observed data is

oY) = [ X, Y)ax = [ f(x0) T[ 4% | XV | X)dX

t=1



Bayesian Framework
» The prior:

T
p(X foXOH (Xe | Xi-1)

» The likelihood:

T
p(Y | X) = Hgt(Yt | Xt)
t=1

» The posterior:

T
p(X|Y):p(:(({})/)O<P(X7Y fo(Xo) H (Xe | Xi—1)ge(Ye | Xi)

Direct sampling from this posterior distribution can be difficult. We need to utilize
the sequential structure of the model.



The Sequential Structure
Suppose we are at time ¢.
> We have observed data Y7,...,Y;.
» We have the latent states Xy, ..., X;.
> The sequential joint prior for the latent states is

t
p(X1) = fi(Xo) [ ] £o(Xs | Xoo1)

s=1
» The sequential likelihood for the observed data (so far) is

p(Yi | X)) = [[a(vi| Xx0)
s=1

» The sequential posterior for the latent states up to time ¢ is (also called the
filtering distribution)
t

p(Xi | Yy) o< fi(Xo) [ £o(Xs | Xoo1)gu(Ye | X0)

o—1



The Sequential Structure
At time ¢,
> The predictive distribution for the latent state at time t + 1 is

p(Xiit | Y = [ (X1 | Xp(X: | i) X,
» The joint distribution of the latent states up to time ¢t + 1 is
(X1 [ Y1) = p(Xeq1 | Yy)p(Xy | VD)

t
o fer1(Xer | Xa) fo(Xo) [ £5(Xs | Xom1)ge(Yr | X0)

s=1
» The incremental likelihood for the observed data at time ¢t + 1 is
p(Yir1 | Xig1) = ge1 (Yo | Xeg1)

» The filtering distribution for the latent states up to time t + 1 is

t+1
p(Xei1 | Y1) o p(Yier | Xo)p(Xe | ¥a) o< fo(Xo) [T f(Xs | Xom1)ga(V2 | Xo)

s=1



The Sequential Structure

The sequential structure of the state-space model allows us to update the latent states
one by one.

» p(Xiy1 | Yy) is the prior
» p(Yiy1 | Xit1) is the likelihood
» p(Xit1 | Yit1) is the posterior

A rudiment of sequential Monte Carlo:
» If we have a sample from X, | Y;.
» We can draw a sample from X, | Y; by drawing X411 from p(Xi41 | Xt).

» We can update the sample to X1 | Y;41 by adjusting its weight according
p(Yeq1 | Xit).

Remark:
» The distribution p(X; | Y;) is called the filtering distribution.
» The distribution p(X; | Y) is called the smoothing distribution.



Multivariate Normal Distribution
» The vector X ~ N (u,X) if its density is

1 1 _
f(z) = WeXp <—2(CL‘ —pw)'E (@ - M))

» The vector X is multivariate normal if and only if every linear combination of its
components is normally distributed.

> If X ~N(u,X), then AX +b~N(Au+b, AZAT),
» Marginally normal does not imply jointly normal:

Xl NN(O, 1), XQ == SXl

where s is a Rademacher random variable.



Multivariate Normal Distribution

Suppose
Ge)~ () (50 52))
X5 po) \ o1 oo
Then the conditional distribution of X7 given X5 is

X1 | Xo~ N (1 + 212555 (X2 — p2), Ti1 — 1235, So1)



Multivariate Normal Distribution

Proof 1:
The joint density of X7 and X5 is
p(x1, x2)
T -1
x exp (_1 <CL‘1 - ,u1> <211 212) (931 - Hq))
2\ Ty — o o1 Yo To — W2

1 _
X, €XP ( - 5(5'31 — )T (B — Z19F90F01) ' (21 — 1)

_ —1 _
+ (z1 — p1)” (211 — 2122221221) 1935, (xg — M2)>

The conditional distribution of X given X5 is

X1 | X~ N (1 + $10555 (Xo — p2), B11 — B1235,) Bo1)



Multivariate Normal Distribution

Proof 2:
Construct

i\ _ (I ~T125 ) (X1 _ X — 12555 X
Y, 0 I X5 X

Since Y7 and Y5 are linear combinations of X7 and X5, they are jointly normal:

(Y1> Y ((Hl - 2122221112) (211 ~ 21535,y 0 >>
Y, 2 ’ 0 X9

Therefore, both Y7 and Y5 are normal and they are independent. And

X | Xo=(V1+31225, Y2) | Yo~ N (p1 + S1080 (X — p2), 211 — 21222721221)



Sequential Structure Under Linear Gaussian Models

Consider the following linear Gaussian state-space model:

Xi | Xim1 ~ N (A X1, %)
Y: | X¢ ~ N (B Xy, Ry)

Or, in a constructive way,

Xi = A Xy 1+ €
Y, = Bi Xy +my.

with €, ~ N(0,%;) and gy ~ N (0, R;).



Sequential Structure Under Linear Gaussian Models

Notice that
X\ (A L 0 X;H
v,) \BiA; By I, ¢
e

If X;—1 ~N(pe—1,Vi—1), then

X ~ N Aipy_q At%—lA?+2t AtW_lAfo+Zth |
Y, BiAip; 1) \BiAV,_1 AT + B/, BA,V, AT Bl + BBl + R,)

Using the conditional probability of multivariate normal distribution, we have
Xi | Y~ N (e, Vi)
with
e =
Apy1 + (AVia Al + 5)B/ (B AV, 1A Bl + BB + R,) ™' (Y, — BiAypy 1)
V,= AV, 1A + %
— (A V1 AT + 3Bl (B, AV, 1A' BY + BB + R)'Bi(A V1 AT + )



Sequential Structure Under Linear Gaussian Models

A simplified version of the previous formula:
> If Xy 1 ~N(ui—1,Vi_1), then
> X | Y~ N (e, Vi)
> with

Q= AV, 1Al +3

K, = B,Q:B + R,

pe = Agpi—1 + QB K ' (Y — BiAype—1)
Vi=Q: - QB/K;'BQ,



Kalman Filter
Consider the following linear Gaussian state-space model:

X | Xpo1 ~ N(A X1, 3)
Vi | Xy ~ N(Bi Xy, Ry)
with X ~ N(uo, ‘/0)
The Kalman filter is a recursive algorithm to compute the filtering distribution
Xt ‘ Y NN(Mta‘/If):
1. fort=1,2,...,T:
2. Compute

Q= AtVi—lAtT + 3

K, = B,Q,B + R,

pe = A1 + QB KN (Y, — BiAyp—1)
Vi=Q: - Q:B/K;'B,Q,



The Smoothing Problem

Now we consider the smoothing problem, that is, to find the smoothing distribution
X | Yr.
From the previous calculation, we have

o) P ((al) (v a)

Xyt Arpipe) \An1Ve Qi

Using the conditional probability of multivariate normal distribution, we have

X | Xep1, Y~ N (e + WAtTHQ;h (Xtr1 — Apr1u), Vi — WA?+1Q;+11At+1W)

In the smoothing case, we assume Xy | Y7 ~ N (v, Uy).



The Smoothing Problem

Using the law of total expectation, we have
v, =E[X; | Y7
=E[E[X; | X¢11, Y7] | Y7
= EE[X; | Xi11, Y] | Y7
=E[p + VA t+1Qt+1(Xt+1 Appipe) | Yo
= pi + ViALL Q) (Wi — Ayipu)



The Smoothing Problem

Using the law of total variance, we have

U, = Var[X; | Y7]
= E[Var[X; | Xi11,Y7] | Yr] + Var[E[X; | X401, Y7 | Y7
= E[Var[X; | X¢41, Y] | Yr| + Var[E[X; | Xi14,Y] | Y7
=E[V, - VAL QL A Vi | Yo + Var[py + VIAT Q) (X1 — Appap) | Y
=Vi- VAL Q7L A Vi + VAL QLU QL AV
=Vi+ VAL Q) (Ui — Quin)Q AV,



The Smoothing Problem

In summary, if we know X; 1 | Y ~ N (v41,Ugt1), then
Xy | Yr ~ N(v, Uy)
with

vi =+ ViIALL QL (v — Avau)
U=V, + VAL Q! (Uit — Q)@ A Vi



Kalman Smoother

The Kalman Smoother is a recursive algorithm to compute the smoothing
distribution X; | Y7 ~ N (v, Uy):

1. Run the Kalman filter.

2. Initialize vy = pup and Up = V7.

3. fort=T-1,T—-2,...,1:

4. Compute

C,=V.AL.Qr,
vi = pt + Cr(vey1 — Agpipe)
U; =V, + Ci(Ups1 — Qi41)CY



Example: Object Tracking

Xy =AX; 1+
th = BXt + €,

where

coc o
o ocoor o
SO o o

_ o = O

€t ~ N(O, R)
m ~ N(O, 3).

with & = diag(0.3,0.3,0.5,0.5) and R = diag(10, 10).



Example: Object Tracking

0, nrow=2, ncol=4)

Sigma = diag(e(0,3, 0.3, 0.5, 0.5))
R = diag(c (10, 10))

T = 100

Y array (0, dim=c(2, T))

X c(0, 0, 0, 0)

for(t in 1:T) {
X = A%*%X + sqrt(Sigma) %*% rnorm(4)
Y[,t] = B%$*%X + sqrt(R) %*x% rnorm(2)



Example: Object Tracking

o
o Q
S goéfb%@)
& d [c)
g0 ©° 3
o — o
@
o
N
X 8 - @
0O
o od®
J oo
o P
Q | @ ©
® o ©Co
I I I I I I
-250 -200 -150 -100 -50 0

X1



Example: Object Tracking

mu = array (0, dim=c (4, T+1))
V = array (0, dim=c(4, 4, T+1))
Q array (0, dim=c(4, 4, T+1))
for(t in 1:T) {

Q[,,t+1] = A% *SV[,,t]%*%t (A) + Sigma

K = B%*%Q][, 1]/*%t(B) + R

mul,t+1] = % gmul,t] + Q[,,t+1]1%*%t
smul,t])

V[,,t+1] = Q[,,t+1] — Q[,,t+1]1%*%t (

(B) $*x%solve (K) $*% (Y[,t] — B%S*%A

B) $x%solve (K) $*%B%$*%Q[,,t+1]



Example: Object Tracking
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Example: Object Tracking

nu = array (0, dim=c (4, T))

U = array (0, dim=c (4, 4, T))

nul,T] = mul[,T+1]

Ul,,T] = VI[,,T+1]

for(t in (T-1):1){
C =V[,,t+1]1%*%t (A) $*%$solve (Q[,,t+21])
nul[,t] = mu[, t+1] + C%*%(nul,t+1] - A%*Smul,t+1])
Ul,,t] = V[,,t+1] + C%*$(U[,,t+1] - Q[,,t+2])%*%t (C)



Example: Object Tracking
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Example: Object Tracking
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