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Nonlinear Mixed Effects Model

Nonlinear Mixed Effects Model (NLME) is a two-stage model

yi = fi(γ,ai) + εi

ai = Aiβ + bi

with εi ∼ (0, σ2I) and bi ∼ N (0, σ2D).

I When γ is absent and fi is linear, NLME model is the same as the LGC model.

I NLME is not the same as marginal models because ai is in the argument of the
nonlinear functions fi.



Previous Models

I Linear Mixed Effect Model:

yi = Xiβ +Zibi + εi

I Linear Growth Curve Model:

yi = Ziai + εi

ai = Xiβ + bi

I Nonlinear Marginal Model (Type II):

yi = fi(β) +Zi(β)bi + εi

I Generalized Linear Mixed Effect Model:

P[yij = 1] = µ(βTxij + bTi zij)



Example: Height v.s. Age



Example: Height v.s. Age

I LGC model is not appropriate because the curves are not linear.
I Need to consider nonlinear curves with the following parametrization.

I logistic curve:

f(t) =
a1

1 + ea2−a3t

I quadratic-logistic curve:

f(t) =
a1

1 + ea2−a3t−a4t2

I In an NLME model, we consider

yij =
a1 + b1i

1 + e(a2+bi2)−(a3+bi3)tij−(a4+bi4)t2ij
+ εij

where a1, a2, a3, a4 are fixed effect coefficients, and bi1, bi2, bi3, bi4 are random
effect coefficients.



Maximum Likelihood Estimation

The log-likelihood function is

`(γ,β, σ2,D) = −1

2

[
N log |D|+

N∑
i=1

(ni + k) log σ2 +

N∑
i=1

log

∫
gi(γ,a,β, σ

2,D)da

]

with

gi(γ,a,β, σ
2,D) = exp

{
− 1

2σ2

[
‖yi − fi(γ,a)‖2 + (a−Aiβ)TD−1(a−Aiβ)

]}



CR Lower Bound for MLE

I Use the following result:
If X has a distribution parametrized by θ, and Y is independent of θ conditioned
on X, then

IY � IX
I Then we have

Cov(β̂ML) ≥ σ2

(
N∑
i=1

AT
i D

−1Ai

)−1



Two-stage Estimator

If γ is absent,

yi = fi(ai) + εi

ai = Aiβ + bi

I First stage: fit the first equation individually for each group.

min
ai

‖yi − fi(ai)‖2,

and estimate the covariance

I Second stage: fit the second equation.



Two-stage Estimator — Some Details

I Covariance of a∗i .
Cov(a∗i | bi) = σ̂2(RT

i Ri)
−1

where σ̂2 is the variance estimator and Ri is the derivative matrix of fi at a∗i .
I Estimate β from the second equation.

I Method 1: Assume a∗
i is normal. Use MLE.

I Method 2: Estimate D̂ from MoM. Then use GLS to estimate β.

I Drawbacks:
I Require sufficiently large ni for each group.
I Outliers in the first stage estimate may ruin the second stage.

I What if there is γ in the model?

The first stage becomes

min
γ,a1,...,aN

N∑
i=1

‖yi − fi(γ,ai)‖2
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First-order Approximation

We may transform the problem into a marginal model using the following
approximation:

fi(γ,ai) = fi(γ,Aiβ + bi) ≈ fi(γ,Aiβ) +Zi(β)bi

where

Zi =
∂fi(γ,ai)

∂ai
.

Now the model becomes a marginal model:

yi = fi(γ,Aiβ) +Zi(β)bi + εi

One can use GEE or MLE with IRLS.



First-order Approximation — Lindstrom-Bates Version

I The idea: to reduce approximation error, we should expand fi at a more clear
point b̂i (instead of 0) such that

fi(γ,ai) ≈ fi(γ,Aiβ + b̂i) +Ri(bi − b̂)

where Ri = ∂fi/∂ai at ai = Aiβ + b̂i.

I The method is the actual implementation of nlme function in the nlme package.



Lindstrom-Bates Estimation

Repeat the following two steps until convergence:

1. Penalized nonlinear least square (PLS): For fixed D, minimize the following

min
γ,β,b1,...,bN

N∑
i=1

[
‖yi − fi(γ,Aiβ + bi)‖2 + bTi D

−1bi
]

2. Linear mixed effects (LME): Given estimators from step 1, fit the following LME
using MLE:

yi = fi(γ̂,Aiβ̂ + b̂i) +RiAi(β − β̂) +Ri(bi − b̂i) + εi,

with εi ∼ N (0, σ2I) and bi ∼ N (0, σ2D).
Get β̂, σ̂2, D̂.



Example: Height data

1 source("./Data/MixedModels/Chapter08/height.dat")

2 data = height.dat[height.dat$sex==1,]
3

4 QLogist = function(a1 , a2 , a3 , a4 , x){

5 return(a1/(1+ exp(a2-a3*x-a4*x^2)))

6 }

7

8 library(nlme)

9 nlme(height~QLogist(a1, a2, a3, a4, x=year),

10 fixed=a1+a2+a3+a4~1,

11 random=a1+a2+a3+a4~1|id,

12 data=data ,

13 start=c(a1=182, a2=-1, a3=-0.2, a4 =0.02))



Example: Height data

Nonlinear mixed-effects model fit by maximum likelihood

Model: height ~ QLogist(a1, a2, a3, a4, x = year)

Data: data

Log-likelihood: -1508.839

Fixed: a1 + a2 + a3 + a4 ~ 1

a1 a2 a3 a4

165.25699563 -2.80382194 -0.56972462 0.04629372

Random effects:

Formula: list(a1 ~ 1, a2 ~ 1, a3 ~ 1, a4 ~ 1)

Level: id

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

a1 6.3110945 a1 a2 a3

a2 0.7977129 0.166

a3 0.2166480 0.128 0.998

a4 0.0161362 -0.109 -0.998 -0.999

Residual 1.2796223

Number of Observations: 702

Number of Groups: 67



Likelihood Approximation
Recall the two equations:

yi = fi(γ,ai) + εi

ai = Aiβ + bi

The (conditional) log-likelihood for the first equation is

`(yi | bi,γ,β, σ2) = −1

2

{
ni log(2π) + ni log σ2 + σ−2‖yi − fi‖2

}
The (marginal) log-likelihood is therefore

`(yi | γ,β, σ2,D) = log

∫
e`(yi|bi,γ,β,σ

2)φ(b |D)db

where

φ(b |D) = (2πσ2)−k/2‖D‖−1/2 exp

(
− 1

2σ2
bTD−1b

)



Likelihood Approximation — Linear Approximation

We approximate the nonlinear function fi by

fi(γ,Aiβ + bi) ≈ fi(γ,Aiβ) +Ribi

where

Ri =
∂fi(γ,Aiβ + bi)

∂bi

∣∣∣∣∣
b=0

Then the log-likelihood takes the form:

`(yi | γ,β, σ2,D) = log

∫
α0e

α1+αT
2 b−bTAbdb



Likelihood Approximation — Penalized Quasi-Likelihood

I Use Laplace approximation of the integral — `LA.

I Consider the penalized quasi-likelihood:

`PQL =
∑
i

`i(yi; bi)− σ−2bTi D
−1bi

I PQL method: update the parameters according to `LA and `PQL iteratively.



Example — One-parameter Exponential Family

We consider an exponential family:

yij = eai + εij , εij ∼ N (0, σ2), i = 1, . . . , N, j = 1, . . . , n

with
ai = β + bi, bi ∼ N (0, σ2ω2)

I It is a balanced model.

I ȳi = n−1
∑n

j=1 yij are i.i.d.

I For simplicity, we assume only β is the unknown parameter.
That is, σ2 and ω2 are known.



Example — One-parameter Exponential Family — MLE

The log-likelihood for the i-th group is

`i(β) = C + log

∫
e−(2σ2)−1

∑n
j=1(yij−ea)2e−(2σ2ω2)−1(a−β)2da

The score function is

∂`

∂β
= −

N∑
i=1

∫ ( e2a−neaȳi
σ2 + a−β

σ2ω2

)
e−(2σ2)−1

∑n
j=1(yij−eai )2e−(2σ2ω2)−1(a−β)2da∫

e−(2σ2)−1
∑n

j=1(yij−ea)2e−(2σ2ω2)−1(a−β)2da

The Fisher’s matrix is even more complicated.



Example — One-parameter Exponential Family — First-order Approx

Now we consider the first-order approximation:

eai = eβ+bi ≈ eβ + eβbi

The model is now equivalent to

yi = eβ1 + ηi, ηi ∼ N (0, σ2(I + e2βω211T ))

Let V = I + e2βω211T . We have

yi ∼ N (eβ1, σ2V )



Example — One-parameter Exponential Family — First-order Approx
When V is fixed, we have the GLS solution:

β̂ = log

∑
i 1

TV −1yi∑
i 1

TV −11

On the other hand, we have (by Woodbury identity)

V −1 = (I + e2βω211T )−1 = I − e2βω2

1 + ne2βω2
11T

Therefore,

1V −1yi =
1

1 + ne2βω2
1Tyi

1V −1yi =
n

1 + ne2βω2

Then we have

β̂ = log

∑
i

∑
j yij

Nn
= log ȳ



Example — One-parameter Exponential Family — First-order Approx

β̂ = log ȳ

Now let N →∞. Then

β̂ → lim
N→

log

(
N−1

N∑
i=1

ȳi

)
= β +

1

2
σ2ω2.

I β̂ from first-order approximation is not consistent!

I The asymptotic bias is 1
2σ

2ω2.

I This bias comes from the approximation error:

eβ+bi = eβ + eβbi + e2β · 1

2
bi︸︷︷︸

expectation: 1
2
σ2ω2

+O(b3i )



Example — One-parameter Exponential Family — Two-stage Estimation

First stage: estimate ai from each group individually.

âi = log ȳi

Second stage: estimate β from the second equation.

β̂ =
1

N

N∑
i=1

log ȳi

Now let N →∞, we have

lim
N→∞

β̂ = E[log(eβ+bi + ε̄i)] < E[log(eβ+bi)] = β

The inequality uses Cauchy-Schwartz inequality.

I Two-stage estimator is inconsistent.



Example — One-parameter Exponential Family — L-B Estimation
The penalized least squares (PLS) is

min
β,b1,...,bN

N∑
i=1

 n∑
j=1

(yij − eβ+bi)2 +
b2i
ω2


The estimating equations are

N∑
i=1

n∑
j=1

(yij − eβ+bi)eβ+bi = 0

n∑
j=1

(yij − eβ+bi)eβ+bi − bi
ω2

= 0 i = 1, . . . , N.

The L-B estimator is the solution to
N∑
i=1

b̂(β, ȳi) = 0,

where b̂(β, ȳi) is the solution to the second equation.



Example — One-parameter Exponential Family — L-B Estimation

The L-B estimator satisfies
N∑
i=1

b̂(β̂, ȳi) = 0

When N →∞, the β̂ converges to the zero of

E[b̂(β, ȳ)]

where b̂(β, ȳ) is the solution to

e2(β+b) − eβ+bȳ +
b

nω2
= 0.

I In general, the L-B estimation here is inconsistent.



Equivalence of MLE, TS, and LB Estimators

I In the one-parameter exponential family example, TS and LB are inconsistent
when N →∞.

I But, TS and LB are consistent when n→∞. (Check!)

Here we provide the general equivalence result.

Theorem
Under mild asymptotic conditions, MLE, TS, and LB estimators have the same limit
normal distributions when N →∞ and mini ni →∞.


