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Nonlinear Mixed Effects Model

Nonlinear Mixed Effects Model (NLME) is a two-stage model

yi = fi(v,a:) + €
a;, = A;,8+b;

with €; ~ (0,02I) and b; ~ N(0,0%D).

» When - is absent and f; is linear, NLME model is the same as the LGC model.

» NLME is not the same as marginal models because a; is in the argument of the
nonlinear functions f;.



Previous Models

» Linear Mixed Effect Model:
yi = XiB+ Z;b; + €
» Linear Growth Curve Model:

Yi = Zia; + €
a; = X;B+b;

» Nonlinear Marginal Model (Type II):
vi = fi(B) + Z;(B)b; + €;
» Generalized Linear Mixed Effect Model:

Ply;; = 1] = p(B zij + b] 24)



Example: Height v.s. Age
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Example: Height v.s. Age

> LGC model is not appropriate because the curves are not linear.
» Need to consider nonlinear curves with the following parametrization.
> logistic curve:

ft) = %
» quadratic-logistic curve:
ft) = Heaiﬁ
» In an NLME model, we consider
a1 + by

P + €
Yij 1+ e(a2+bm)—(a3+bi3)tij—(a4+bi4)t?j &
where a1, a9, as, as are fixed effect coefficients, and b;1, b;o, b;3, bj4 are random

effect coefficients.



Maximum Likelihood Estimation

The log-likelihood function is
1 N N
2 _ , 2 . 2
((v,8,0%, D) = — [N log | D| + ;(m + k) log o + 21og/gm, a,B.o ,D>da]

with

9i(v,a,B,0%, D) = exp {—2}‘2 llyi — fi(v.@)|I” + (a— A;B)"D ! (a — A;B)] }



CR Lower Bound for MLE

> Use the following result:
If X has a distribution parametrized by #, and Y'is independent of 6 conditioned

on X, then
Iy 2 Ix

» Then we have

N —1
COV(BML) > o2 (Z AZ-TD_IA1'>

i=1



Two-stage Estimator

If ~ is absent,

yi = fi(a;) + €
a; =A;B+b;

» First stage: fit the first equation individually for each group.

min [|y; — filai)|%,

and estimate the covariance

» Second stage: fit the second equation.



Two-stage Estimator — Some Details

» Covariance of a;.
Cov(af | bj) = 62(RTR;) ™!
where 62 is the variance estimator and R; is the derivative matrix of f; at a;.
» Estimate 3 from the second equation.

» Method 1: Assume a; is normal. Use MLE.
» Method 2: Estimate D from MoM. Then use GLS to estimate 3.

» Drawbacks:

» Require sufficiently large n; for each group.
» Qutliers in the first stage estimate may ruin the second stage.

» What if there is v in the model?



Two-stage Estimator — Some Details

» Covariance of a;.
Cov(af | bj) = 62(RTR;) ™!
where 62 is the variance estimator and R; is the derivative matrix of f; at a;.

» Estimate 3 from the second equation.

» Method 1: Assume a is normal. Use MLE.

> Method 2: Estimate D from MoM. Then use GLS to estimate 3.
» Drawbacks:

» Require sufficiently large n; for each group.

» Outliers in the first stage estimate may ruin the second stage.
» What if there is v in the model?

The first stage becomes

v,a1,...,a

N
min Ny Z lyi — fi(v, )|
i1



First-order Approximation

We may transform the problem into a marginal model using the following
approximation:

fi(v,a;) = fi(v, AiB + by) = fi(v, AiB) + Z;(B)b;

where
ofi(v, a;)
6ai

Now the model becomes a marginal model:

Z; =

yi = fi(v, AiB) + Zi(B)b; + €

One can use GEE or MLE with IRLS.



First-order Approximation — Lindstrom-Bates Version

> The idea: to reduce approximation error, we should expand f; at a more clear
point b; (instead of 0) such that

fi(v,a;) = fi(v, AiB + b;) + Ri(b; — b)

where R; = 8f2/8a1 at a; = A;B8+ I;z
» The method is the actual implementation of nlme function in the nlme package.



Lindstrom-Bates Estimation

Repeat the following two steps until convergence:
1. Penalized nonlinear least square (PLS): For fixed D, minimize the following

N

o i — fi(v, AiB + )| + 6T Db,
v.B.b1,..by ;[Hy fily, Ai + bi)| ]

2. Linear mixed effects (LME): Given estimators from step 1, fit the following LME
using MLE:

yi = fi(, AiB + b)) + RiA(B — B) + Ri(b; — b)) + €,

with €; ~ N'(0,0%I) and b; ~ N(0,0°D).
Get 3, 62, D.



Example: Height data

source ("./Data/MixedModels/Chapter08/height.dat")
data = height.dat[height.dat$sex==1,]

QLogist = function(al, a2, a3, a4, x){
return(al/ (1+exp(a2-a3*x-ad*x~2)))
}

library (nlme)

nlme (height “QLogist (al, a2, a3, a4, x=year),
10 fixed=al+a2+a3+ad4d"1,

11 random=al+a2+a3+a4~1|id,

12 data=data,

13 start=c(al1=182, a2=-1, a3=-0.2, a4=0.02))
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Example: Height data

Nonlinear mixed-effects model fit by maximum likelihood
Model: height ~ QLogist(al, a2, a3, a4, x = year)
Data: data
Log-likelihood: -1508.839
Fixed: al + a2 + a3 + a4 ~ 1
al a2 a3 a4
165.25699563 -2.80382194 -0.56972462 0.04629372

Random effects:

Formula: list(al ~ 1, a2 ~ 1, a3 ~ 1, a4 ~ 1)

Level: id

Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr

al 6.3110945 a1l a2 a3

a2 0.7977129 0.166

a3 0.2166480 0.128 0.998

ad 0.0161362 -0.109 -0.998 -0.999

Residual 1.2796223

Number of Observations: 702
Number of Groups: 67



Likelihood Approximation
Recall the two equations:

yi = filv.ai) + &
a; = Ai8 + b;

The (conditional) log-likelihood for the first equation is
U(y; | bi,7y,B,0%) = —% {nZ log(27) 4 n;logo? + o 2|ly; — fiHZ}
The (marginal) log-likelihood is therefore
f(v: | 7.8.0%, D) =log [ /@012 40t | D)ab

where .
$(b| D) = (270%) /% D[ /2 exp (—NbTD‘lb)
g



Likelihood Approximation — Linear Approximation

We approximate the nonlinear function f; by

fi(v, AiB + b)) = fi(v, AiB) + R;b;

where

_ 0fi(v, AiB + b))

R;
ob;

b=0
Then the log-likelihood takes the form:

e(yl ’ ’77,8,0'2,D) = log/aoeal‘f’agbbTAbdb



Likelihood Approximation — Penalized Quasi-Likelihood

» Use Laplace approximation of the integral — £ 4.

» Consider the penalized quasi-likelihood:
EPQL = Z&(yz,bz) — UﬁzbiTDilbi

» PQL method: update the parameters according to /1,4 and {pqy, iteratively.



Example — One-parameter Exponential Family

We consider an exponential family:

Yij = e + €, Gz‘jNN(O,UQ), i=1,...,N, j=1,...

with
a;i=B+b;, b ~N(0,0%w?

> It is a balanced model.

- 71 .
> gi=mn"" D0 yij are ii.d,
» For simplicity, we assume only 3 is the unknown parameter.
That is, o2 and w? are known.



Example — One-parameter Exponential Family — MLE

The log-likelihood for the i-th group is
6i(8) = C + log / e~ (207 R (g —e)? o= 202w TR g

The score function is

or N f (e —ne yz ;120,;52) —(20%)" 12] 1 (yij—e” 1)26—(202w2)_1(a—5)2da
2= Z} [ e @A) Tl o (20%2) 0 B)? g

The Fisher's matrix is even more complicated.



Example — One-parameter Exponential Family — First-order Approx

Now we consider the first-order approximation:
e = Ptbi oy B 4 Py,
The model is now equivalent to
yi=eP1+m;, mi~ N(0,0%(I + 626w211T))
Let V =1 +¢e*5u,2117. We have

Y; ~ ./\/'(661, 02V)



Example — One-parameter Exponential Family — First-order Approx
When V is fixed, we have the GLS solution:

R ‘1TV—1 i
B = log 2L Vv — Y
>, 1Tv-11

On the other hand, we have (by Woodbury identity)

28, 2
-1 _ 28, 244T\—-1 _ ¢ €W T
Vii=T+ePwll" ) " =1 T ne2bo?

Therefore,

1

1 + ne2bw?
n

1 + ne28w?

1V ly; = 1"y,

1V ly =
Then we have
B=1

202 Yig _
08 =N, ey



Example — One-parameter Exponential Family — First-order Approx

B =logy

Now let N — oco. Then
B—>}\ifrglog ( Z%) B+ Gw2

> ;3 from first-order approximation is not consistent!
> The asymptotic bias is ; 202
» This bias comes from the approximation error:
1
e = ef + &b, + e - b +0(b3)

)

expectation:%cﬂw2



Example — One-parameter Exponential Family — Two-stage Estimation
First stage: estimate a; from each group individually.
a; = logyi

Second stage: estimate 3 from the second equation.
1N
B=5 2 logt:
=1
Now let N — oo, we have
lim (= E[log(e’* +&)] < Ellog(e®*)] =
N—oo

The inequality uses Cauchy-Schwartz inequality.

> Two-stage estimator is inconsistent.



Example — One-parameter Exponential Family — L-B Estimation
The penalized least squares (PLS) is

N n b2
R D SUIEELERE.
B;b1,-...bN p i w
The estimating equations are
n
Z Z 5+b ePrhi —
=1 j=1
- b,
Z(yij AR Caa — =0 i=1,...,N.
w

=1
The L-B estimator is the solution to

N ~
Z b(/B gz) =

where B(B, ;) is the solution to the second equation.



Example — One-parameter Exponential Family — L-B Estimation

The L-B estimator satisfies N
> b(B,5:) =0
i=1

When N — oo, the 5 converges to the zero of

E[b(8,7)]

where b(83,7) is the solution to

b
e2(B+b) _ eﬁ+bg +—5 =0.
nw

» In general, the L-B estimation here is inconsistent.



Equivalence of MLE, TS, and LB Estimators

» In the one-parameter exponential family example, TS and LB are inconsistent
when N — o0.

» But, TS and LB are consistent when n — oo. (Check!)
Here we provide the general equivalence result.
Theorem

Under mild asymptotic conditions, MLE, TS, and LB estimators have the same limit
normal distributions when N — oo and min; n; — oo.



