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Regression Models for Binary Data

» If the outcome y is binary, we often model that with
Ply; = 1] = (8" ;)

x;: covariate vector for unit <.
y; is Bernoulli with parameter u(87 z;).
1 is the inverse link function.

Equivalently,

where 7 is the link function.

» Mean and variance:

Elyi] = (B @), Var(y;) = p(B8 @;)(1 — n(8" ;).



Regression Models for Binary Data

Properties for the inverse link function .

1. The function p(s) is defined for all s € (—o0, 0).
0<p(s) <1, limys_oo p(s) =0, and limy_yoo p(s) =1
du(s)/ds = u' > 0.
d?log ju(s)/ds? < 0
Symmetry: p(s) =1 — pu(—s).

o LN

Interpretations:
» (1) and (2): p(s) is a valid parameter for Bernoulli distribution.
» (3): strictly monotonic probability
» (4): concave log-likelihood function
> (

5): symmetric under the transformation y; — 1 — ;.



Regression Models for Binary Data

Some choices for the inverse link function p:

P Logistic regression:

» Probit regression:

p(s) = @(s) = \/12? /_S e 2t

s

P> Log-log regression:
€

u(s)=1—e"



Regression Models for Binary Data

Some choices for the inverse link function pu:

> Logistic regression: popular in epidemiology, biomedicine, and machine learning.

Plyi =1]ai] _ pra,

Ply; = 0 | ;]

P Probit regression: popular in engineering and econometric studies.
Binary response as from a Gaussian outcome with cut-off

Z=p"zi+e, yi=1{z>c}
> Log-log regression: related to Poisson distribution.

2~ Poisson(eﬁTxi), yi = 1{z; > 1}



Regression Models for Binary Data
Logistic and probit functions are similar:

Probability functions Deviation from logit
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FIGURE 7.2. Logit approximation by probit(s). One-probit approximation (7.9) uses
¢ = 1.6 and ¢ = 1.7. The latter c gives an absolute error of approximation of less than
0.01. The two-probit approximation (7.11) yields an absolute error of 0.000526.



Regression Models for Binary Data

The model:
Ply; = 1] = u(B" ;)
The likelihood function is
L) = [[ wB™=:) [ [1-n(B )]
2y =1 2:y; =0
The log-likelihood is
(B) = logu(BTm) + Y log(1— (B )

i:yizl zyzzo

= [vilog (BT a:) + (1 — yi) log(1 — (B @s))]

=1



Regression Models for Binary Data

n

(B) = Z [yilog (8" a;) + (1 — y;) log(1 — (8" x;))]

=1

> /(B) < 0. (proof?)

P score equations:

» information matrix:



Regression Models for Binary Data

Algorithm to find the MLE:

BHRD = W) L N H <6B)

> Newton-Raphson: Hy is the negative Hessian.

» Fisher-Scoring: H is the information matrix.

> step size \s; can be determined by the unit-step algorithm (see Chapter 7.1.5 in
textbook)



Binary model with subject-specific intercept

Now we assume a mixed-effect style model such that the intercept is group-specific.
Plyij = 1] = p(a; + B" xij)

We have two interpretations:
1. Fixed effects model. a;'s are fixed unknown parameters.

> Regular generalized linear regression with (a lot of) dummy variables.
» Curse of dimensionality.

2. Random effects model. a; = o + u; is random with E[u;] = 0 and Var[u;] = o2.

» More flexible, less number of parameters.
» Need more complicated estimation methods.



Binary model with subject-specific intercept

Now we consider
Ply;; = 1] = pla; + BT xij), ai ~ N(a,0?)

if 02 is known, the log-likelihood function is

(0) 71_0—2 N
E(Oé,ﬁ) = _]Vlg(22) + Zgz(a’ﬁ)

with

o0

exp {e@(a,ﬁ) - Wdai}

202

ti(a.B) = log [

—00

and
nj

i, B) = [yijmlai + BT @) + (1 — i) (1 — p(a; + B x,))]

J=1



Binary model with subject-specific intercept

» When 02 — o0, the random effects model turns into a fixed effects model.
» MLE does not exist if there exists (a,3) such that

a—+ ,BT.’L'Z']' < 0 when Yij = 0
a+ ,BT.’L'ij > 0 when y;; =1



Logistic regression with random intercept

Consider a logistic regression with random intercept.

eaitBT T
Flowg =11 odd = e
with
a; = a+b; ~ N(a,0?)

Or, equivalently, by adding the constant variable 1 to x;;, we have

ebitBT i
Ply; =1]bi] = 15 bithTay
with
bi ~ N(0,0?)



Logistic regression with random intercept

cbitB i

Ply;j = 1] b;] = . by ~N(0,0%)

1+ ebi+f3T93ij
Therefore, the marginal probability of y; = (vi1,- .., Yin,) is

Plyl = [ Flus | 0] PO /przﬂb | dP(b)

/00 1 vz oy (bitBT i)

e 2052 e dbz
2o e 1 + ebitBTai;

BT vigmiy)  poo 202+ > Vi W
 V2mo? o T (1 et BTEs)




Logistic regression with random intercept — MLE
Then we have the log-likelihood function:

N
N 0o '
UB,0%) =~ log(2r0?) + BTr + Y log / Ji(Bs) g

i=1 -
and
u? - T
hi(B;u) = 552 kiu — Zlog(l + et B @i
o =
with
n N nj
ki=> g, and 7= Y yiwi
j=1 i=1 j=1

» In order to find the MLE, one needs to approximate the integrals involved in
¢(B,0?) and its partial derivatives. (See textbook for integral approximation
methods)



Logistic regression with random intercept — Conditional MLE

Instead of considering MLE, we consider the following conditional probability:
n; b . eyij(bi""ﬁimij)
; J b;+B81 =,
P [yz [yl] 1+e J
=1

n; = - (bs T .
P [Zz‘i1 Yij = kz] D e ﬁBT“’w)
zies”jaki 7 1+€bi+,3 x;j

Zyij =k;

pbikitBT 3 vijei; B vii i

b'k'+ﬁTZ-z~.’1:~ - BTEzm
Zzles e I Zziesn ke, € I

The conditional probability does not depend on b;. Therefore, we consider the
conditional MLE as

N
T o
IBCML = arg max B Z YijTij | — Z log Z 6'6 2 2
i=1 2305 2= Yij



Logistic regression with random intercept — Conditional MLE

» Conditional MLE estimates 3 and bypass the random intercepts.
» Conditional MLE is tractable without integral.
» Sy, k; contains all binary vectors of length n; that sum up to k;.

» Complex computation for large n;.



Logistic regression with random intercept — Fixed Sample Approximation

The integral involved in the log-likelihood function:

1 / = hiBw gy, — L / (B = 2 gy — / T i (Bufo) 2 gy,
—00 —0o0 — 00

g g

» Fixed Sample Approximation:

> Draw a weighted sample (us, ws) from A(0,1).
» Approximate the integral by

oo S
/ li(Biu/0) o= /2y o V2T Z web (Bsus/o)
s=1

— 00



Logistic regression with random intercept — Quadratic Approximation

/ eliBu/o) =2y, \yith Gi(Byu) = kiu — Z log(1 + e“+ﬁTwij)
oo =

» Quadratic Approximation:

» We find the following quadratic approximation to the second term in /;:

o ’ 1
Zlog(l + e“*BTm”) ~ Co; + Crju + §C’qu2
j=1

J I BT J B @ij

Coj = D log(1+e2), Oy =3 —5my Coy=3 (1+e87o0)’

j=1 j=1 j=1

> The integral is now tractable in the form of [ ¢Coi+(Crithiu—(1=Caj)u*/2¢y,



Logistic regression with random intercept — Laplace Approximation

/eh(x)da:

If we approximate h(x) at its maximum by

We consider the integral

dx?

2

1 d’h
h(z) ~ hpmaz + =(z — a:,mm)2 (—

x:xmaz>

(why no first-order term?)
Then we have

/ " dr ~ v 27mhmas

—00

» Similar idea as the quadratic approximation — but taken at the maximum.



Logistic regression with random intercept — Summary

» MLE is difficult to maximize because of the integral.
P> Approximate the integral in a tractable way:

» Fixed Sample Approximation — replace integral by weighted sum.
» Quadratic Approximation — approximate exponent by quadratic function.
» Laplace Approximation — Taylor expansion of the exponent at the maximum.

» Conditional MLE: bypass the integral by considering a conditional likelihood.

» Choice of models:

» Small n;: conditional MLE.
> Large n; (> N): fixed-effect models with dummy variables.
» Large N or moderate n;: random-effect models.



Mixed Models with Multiple Random Effects

Now we consider the following model:
Plyij = 1] = u(B" @i + b zi5)

with b; ~ N (0, D,.).
Why D, not o2D?

We will focus on the logistic regression.



Logistic Regression with Multiple Random Effects

Bl aij+b] zi;

Plyi; = 1] =

1 P

with b; ~ (0, D,.).
The log-likelihood function: (let D_ = D)

N
N .
((B,D_)=—log|D_| + BTr + Zlog/ hiB) gy 1 const
2 i=1 R¥
with N
1 0
hi(Bsu) = k' — SulDow — ) "log(1 + % withizn)

J=1

and ki = 27;1 YijZij and r = sz\il 2?1:1 YijZij-
Solution: Laplace Approximation 4+ Penalized Quasi-likelihood.



Generalized Linear Mixed Models via Exponential Families

» Exponential Family: (in natural parameters)
fly; ) = PvbO)—cw)
» GLMM via exponential family:
Yij | bi ~ f(y; B mij + b] 2i5), b ~N(0,D,)
P> For example, in logistic regression,

F(y; 0) = ePy—los(1+e")



Generalized Linear Mixed Models via Exponential Families

» The log-likelihood function:

N
N —
é(ﬁaD*) = —glog\D*\ =+ g ]Og/efi(ﬁfu)—uTD* 1u/2du
i=1

with
() = Y [(BTai; +ul =2y + b(B 2 + u'zy)]

J=1

» Solution: Laplace Approximation + Penalized Quasi-likelihood



Penalized Quasi-likelihood

> Let {14(B, Ds;uf, ..., u)y) be the Laplace approximation of the log-likelihood
function at maximums w;,i =1,...,N.

P> Let the penalized quasi-likelihood function be

N N
1 _
EPQL(ﬁ?“l;"'qu;D*): E EZ(IB7U>_§ E ’u‘zTD* 1ui
i=1 i=1

» The LA + PQL algorithm:
» Initialized the estimators.
» Update u},i=1,..., N according to {pqr.
» Update D, according to £ 4.
» Update 3 according to {pqr,.
» Repeat until convergence.



Marginal Model

Now we consider a marginal model:

Ely:] = u(XiB), Cov(y;) =V;

» Often, we assume certain structure for V;. For example:
V; = D;*RD}"?,

where D; is diagonal with elements (1 — i), and R is assumed to be an
exchangeable correlation matrix.

» To solve the marginal model, we can use GEE:

N
> X WiV Yy — ) =0
=1



Example

We consider the example of Problem 6 of Section 7.5 in the textbook. The dataset
looks like

1 source("./Data/MixedModels/Chapter07/psdat.r")
2 head (psdat)

hrr visitin visitout visittot black agelO female daysfu

1 1 3 0 3 0 8.3 0 2
2 1 23 4 27 0 8.0 1 933
3 1 21 24 45 1 7.9 0 301
4 1 13 5 18 0 6.7 0 411
5 1 39 48 87 o 7.7 0 1325
6 1 0 0 0 1 8.1 0 12



Example — GLMM with PQL

1
2
3
4
5

library (MASS)
glmmPQL (fixed=visittot "black+female+agelO+agel0"2,

random="1|hrr,
data=psdat,
family=poisson)

Linear mixed-effects model fit by maximum likelihood
Data: psdat
Log-likelihood: NA
Fixed: visittot ~ black + female + agel0 + agel0~2
(Intercept) black female agel0
4.99719386 -0.02701705 -0.02863541 -0.14080444

Random effects:

Formula: ~1 | hrr
(Intercept) Residual

StdDev: 0.1973408 5.820526



Example — GLMM with MLE

1 library (1lme4)

2> glmer (visittot "black+female+agelO+agel0~2 + (1]|hrr),
3 data=psdat,

4 family=poisson,

5 nAGQ=1)

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [’glmerMod’]
Family: poisson ( log )
Formula: visittot ~ black + female + agelO + agel0”2 + (1 | hrr)

Data: psdat

AIC BIC logLik deviance df.resid
342622.9 342658.9 -171306.5 342612.9 9861
Random effects:
Groups Name Std.Dev.

hrr (Intercept) 0.2967

Number of obs: 9866, groups: hrr, 306

Fixed Effects:

(Intercept) black female agel0
4.92558 -0.04742 -0.02831 -0.13820



Example — GLMM with MLE

> The nAGQ specifies how to approximate the integral in the log-likelihood function.
» nAGQ: parameter for Adaptive Gauss-Hermite Quadrature.

» nAGQ=1: Laplace Approximation

» Higher nAGQ: better approximation but slower computation.



Example — GEE

1 library (gee)

> gee(visittot “black+female+agelO+agel0~2,
id=hrr,

data=psdat,

family=poisson,
corstr="exchangeable")

o o o~ w

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Logarithm

Variance to Mean Relation: Poisson

Correlation Structure: Exchangeable
Coefficients:

(Intercept) black female agel0

5.02944411 -0.03652173 -0.02930477 -0.14431704

Estimated Scale Parameter: 41.755
Number of Iterations: 4



Example — family argument

> The family argument specifies the error structure and link function of the
generalized linear model.

» The formula is dist(1ink), e.g. binomial (1ink=’1logit’) is the logistic
model.
» Common families:
» Binomial/Bernoulli: binomial
link: ’logit’, ’probit’, ’log’, ’cloglog’
» Poisson: poisson
link: ’log’, ’identity’, ’sqrt’
» Gaussian: gaussian
link: ’identity’, ’log’, ’inverse’



