STAT 574 Linear and Nonlinear Mixed Models

Lecture 7: Generalized Linear Mixed Models

Chencheng Cai

Washington State University

lacktriangle If the outcome y is binary, we often model that with

$$\mathbb{P}[y_i = 1] = \mu(\boldsymbol{\beta}^T \boldsymbol{x}_i)$$

- $ightharpoonup x_i$: covariate vector for unit i.
- $ightharpoonup y_i$ is Bernoulli with parameter $\mu(\beta^T x_i)$.
- \blacktriangleright μ is the **inverse link** function.
- Equivalently,

$$\eta(\mathbb{P}[y_i=1]) = \boldsymbol{\beta}^T \boldsymbol{x}_i,$$

where η is the **link** function.

Mean and variance:

$$\mathbb{E}[y_i] = \mu(\boldsymbol{\beta}^T \boldsymbol{x}_i), \quad \text{Var}(y_i) = \mu(\boldsymbol{\beta}^T \boldsymbol{x}_i)(1 - \mu(\boldsymbol{\beta}^T \boldsymbol{x}_i)).$$

Properties for the inverse link function μ .

- 1. The function $\mu(s)$ is defined for all $s \in (-\infty, \infty)$.
- 2. $0 < \mu(s) < 1$, $\lim_{x \to -\infty} \mu(s) = 0$, and $\lim_{x \to \infty} \mu(s) = 1$
- 3. $d\mu(s)/ds = \mu' > 0$.
- 4. $d^2 \log \mu(s)/ds^2 < 0$
- 5. Symmetry: $\mu(s) = 1 \mu(-s)$.

Interpretations:

- ▶ (1) and (2): $\mu(s)$ is a valid parameter for Bernoulli distribution.
- ▶ (3): strictly monotonic probability
- ▶ (4): concave log-likelihood function
- ▶ (5): symmetric under the transformation $y_i \rightarrow 1 y_i$.

Some choices for the inverse link function μ :

► Logistic regression:

$$\mu(s) = \frac{e^s}{1 + e^s}$$

Probit regression:

$$\mu(s) = \Phi(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{s} e^{-t^2/2} dt$$

► Log-log regression:

$$\mu(s) = 1 - e^{-e^s}$$

Some choices for the inverse link function μ :

▶ Logistic regression: popular in epidemiology, biomedicine, and machine learning.

$$\frac{\mathbb{P}[y_i = 1 \mid \boldsymbol{x}_i]}{\mathbb{P}[y_i = 0 \mid \boldsymbol{x}_i]} = e^{\boldsymbol{\beta}^T \boldsymbol{x}_i}$$

► Probit regression: popular in engineering and econometric studies. Binary response as from a Gaussian outcome with cut-off

$$z_i = \boldsymbol{\beta}^T \boldsymbol{x}_i + \epsilon_i, \quad y_i = \mathbf{1}\{z_i > c\}$$

Log-log regression: related to Poisson distribution.

$$z_i \sim \text{Poisson}(e^{\boldsymbol{\beta}^T \boldsymbol{x}_i}), \quad y_i = \mathbf{1}\{z_i \ge 1\}$$

Logistic and probit functions are similar:

FIGURE 7.2. Logit approximation by probit(s). One-probit approximation (7.9) uses c = 1.6 and c = 1.7. The latter c gives an absolute error of approximation of less than 0.01. The two-probit approximation (7.11) yields an absolute error of 0.000526.

The model:

$$\mathbb{P}[y_i = 1] = \mu(\boldsymbol{\beta}^T \boldsymbol{x}_i)$$

The likelihood function is

$$L(\boldsymbol{\beta}) = \prod_{i:y_i=1} \mu(\boldsymbol{\beta}^T \boldsymbol{x}_i) \prod_{i:y_i=0} \left[1 - \mu(\boldsymbol{\beta}^T \boldsymbol{x}_i)\right]$$

The log-likelihood is

$$\ell(\boldsymbol{\beta}) = \sum_{i:y_i=1} \log \mu(\boldsymbol{\beta}^T \boldsymbol{x}_i) + \sum_{i:y_i=0} \log (1 - \mu(\boldsymbol{\beta}^T \boldsymbol{x}_i))$$
$$= \sum_{i=1}^n \left[y_i \log \mu(\boldsymbol{\beta}^T \boldsymbol{x}_i) + (1 - y_i) \log (1 - \mu(\boldsymbol{\beta}^T \boldsymbol{x}_i)) \right]$$

$$\ell(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left[y_i \log \mu(\boldsymbol{\beta}^T \boldsymbol{x}_i) + (1 - y_i) \log (1 - \mu(\boldsymbol{\beta}^T \boldsymbol{x}_i)) \right]$$

- \blacktriangleright $\ell(\beta) \leq 0$. (proof?)
- score equations:

$$\left(\frac{\partial \ell}{\partial \boldsymbol{\beta}}\right)^T = \sum_{i=1}^n \frac{y_i - \mu_i}{\mu_i (1 - \mu_i)} \mu_i' \boldsymbol{x}_i = 0$$

▶ information matrix:

$$\mathcal{I} = -\mathbb{E}\left[rac{\partial^2 \ell}{\partial oldsymbol{eta}^2}
ight] = \sum_{i=1}^n rac{(\mu_i')^2}{\mu_i(1-\mu_i)} oldsymbol{x}_i oldsymbol{x}_i^T$$

Algorithm to find the MLE:

$$\hat{\boldsymbol{\beta}}^{(k+1)} = \hat{\boldsymbol{\beta}}^{(k)} + \lambda_k \boldsymbol{H}_s^{-1} \left(\frac{\partial \ell}{\partial \boldsymbol{\beta}}\right)^T$$

- Newton-Raphson: H_s is the negative Hessian.
- Fisher-Scoring: H_s is the information matrix.
- lacktriangle step size λ_s can be determined by the unit-step algorithm (see Chapter 7.1.5 in textbook)

Binary model with subject-specific intercept

Now we assume a mixed-effect style model such that the intercept is group-specific.

$$\mathbb{P}[y_{ij} = 1] = \mu(a_i + \boldsymbol{\beta}^T \boldsymbol{x}_{ij})$$

We have two interpretations:

- 1. Fixed effects model. a_i 's are fixed unknown parameters.
 - Regular generalized linear regression with (a lot of) dummy variables.
 - Curse of dimensionality.
- 2. Random effects model. $a_i = \alpha + u_i$ is random with $\mathbb{E}[u_i] = 0$ and $\mathrm{Var}[u_i] = \sigma^2$.
 - More flexible, less number of parameters.
 - Need more complicated estimation methods.

Binary model with subject-specific intercept

Now we consider

$$\mathbb{P}[y_{ij} = 1] = \mu(a_i + \boldsymbol{\beta}^T \boldsymbol{x}_{ij}), \quad a_i \sim \mathcal{N}(\alpha, \sigma^2)$$

if σ^2 is known, the log-likelihood function is

$$\ell(\alpha, \boldsymbol{\beta}) = -rac{N\log(2\pi\sigma^2)}{2} + \sum_{i=1}^{N} \ell_i(\alpha, \boldsymbol{\beta})$$

with

$$\ell_i(\alpha, \boldsymbol{\beta}) = \log \int_{-\infty}^{\infty} \exp \left\{ \tilde{\ell}_i(\alpha, \boldsymbol{\beta}) - \frac{(a_i - \alpha)^2}{2\sigma^2} da_i \right\}$$

and

$$\tilde{\ell}_i(\alpha, \boldsymbol{\beta}) = \sum_{i=1}^{n_j} \left[y_{ij} \mu(a_i + \boldsymbol{\beta}^T \boldsymbol{x}_i) + (1 - y_{ij})(1 - \mu(a_i + \boldsymbol{\beta}^T \boldsymbol{x}_i)) \right]$$

Binary model with subject-specific intercept

- ▶ When $\sigma^2 \to \infty$, the random effects model turns into a fixed effects model.
- ▶ MLE does not exist if there exists (a, β) such that

$$a + \boldsymbol{\beta}^T x_{ij} < 0$$
 when $y_{ij} = 0$ $a + \boldsymbol{\beta}^T x_{ij} > 0$ when $y_{ij} = 1$

Logistic regression with random intercept

Consider a logistic regression with random intercept.

$$\mathbb{P}[y_{ij} = 1 \mid a_i] = \frac{e^{a_i + \boldsymbol{\beta}^T \boldsymbol{x}_{ij}}}{1 + e^{a_i + \boldsymbol{\beta}^T \boldsymbol{x}_{ij}}}$$

with

$$a_i = \alpha + b_i \sim \mathcal{N}(\alpha, \sigma^2)$$

Or, equivalently, by adding the constant variable 1 to x_{ij} , we have

$$\mathbb{P}[y_{ij} = 1 \mid b_i] = \frac{e^{b_i + \beta^T x_{ij}}}{1 + e^{b_i + \beta^T x_{ij}}}$$

with

$$b_i \sim \mathcal{N}(0, \sigma^2)$$

Logistic regression with random intercept

$$\mathbb{P}[y_{ij} = 1 \mid b_i] = \frac{e^{b_i + \boldsymbol{\beta}^T \boldsymbol{x}_{ij}}}{1 + e^{b_i + \boldsymbol{\beta}^T \boldsymbol{x}_{ij}}}, \quad b_i \sim \mathcal{N}(0, \sigma^2)$$

Therefore, the marginal probability of $oldsymbol{y}_i = (y_{i1}, \dots, y_{in_i})$ is

$$\mathbb{P}[\boldsymbol{y}_i] = \int \mathbb{P}[\boldsymbol{y}_i \mid b_i] \ dP(b_i) = \int \prod_{j=1}^{n_j} \mathbb{P}[y_{ij} \mid b_i] \ dP(b_i)$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{b_i^2}{2\sigma^2}} \prod_{j=1}^{n_j} \frac{e^{y_{ij}(b_i + \boldsymbol{\beta}^T \boldsymbol{x}_{ij})}}{1 + e^{b_i + \boldsymbol{\beta}^T \boldsymbol{x}_{ij}}} \ db_i$$

$$= \frac{e^{\boldsymbol{\beta}^T(\sum_j \boldsymbol{y}_{ij} \boldsymbol{x}_{ij})}}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \frac{e^{-\frac{b_i^2}{2\sigma^2} + b_i \sum_j y_{ij}}}{\prod_j (1 + e^{b_i + \boldsymbol{\beta}^T \boldsymbol{x}_{ij}})} \ db_i$$

Logistic regression with random intercept — MLE

Then we have the log-likelihood function:

$$\ell(\boldsymbol{\beta}, \sigma^2) = -\frac{N}{2} \log(2\pi\sigma^2) + \boldsymbol{\beta}^T \boldsymbol{r} + \sum_{i=1}^N \log \int_{-\infty}^{\infty} e^{h_i(\boldsymbol{\beta}; u)} du$$

and

$$h_i(\beta; u) = -\frac{u^2}{2\sigma^2} + k_i u - \sum_{j=1}^{n_j} \log(1 + e^{u + \beta^T x_{ij}})$$

with

$$k_i = \sum_{j=1}^{n_j} y_{ij}, \quad ext{and} \quad oldsymbol{r} = \sum_{i=1}^N \sum_{j=1}^{n_j} y_{ij} oldsymbol{x}_{ij}$$

In order to find the MLE, one needs to approximate the integrals involved in $\ell(\beta, \sigma^2)$ and its partial derivatives. (See textbook for integral approximation methods)

Logistic regression with random intercept — Conditional MLE

Instead of considering MLE, we consider the following conditional probability:

$$\mathbb{P}\left[\boldsymbol{y}_{i} \middle| \sum_{i=1}^{n_{j}} y_{ij} = k_{i}\right] = \frac{\mathbb{P}[\boldsymbol{y}_{i}]}{\mathbb{P}\left[\sum_{i=1}^{n_{j}} y_{ij} = k_{i}\right]} = \frac{\prod_{j} \frac{e^{y_{ij}(b_{i} + \boldsymbol{\beta}^{T} \boldsymbol{x}_{ij})}}{1 + e^{b_{i} + \boldsymbol{\beta}^{T} \boldsymbol{x}_{ij}}}}{\sum_{\boldsymbol{z}_{i} \in \mathcal{S}_{n_{j}, k_{i}}} \prod_{j} \frac{e^{z_{ij}(b_{i} + \boldsymbol{\beta}^{T} \boldsymbol{x}_{ij})}}{1 + e^{b_{i} + \boldsymbol{\beta}^{T} \boldsymbol{x}_{ij}}}} \\
= \frac{e^{b_{i}k_{i} + \boldsymbol{\beta}^{T} \sum_{j} y_{ij} \boldsymbol{x}_{ij}}}{\sum_{\boldsymbol{z}_{i} \in \mathcal{S}_{n_{j}, k_{i}}} e^{b_{i}k_{i} + \boldsymbol{\beta}^{T} \sum_{j} z_{ij} \boldsymbol{x}_{ij}}} = \frac{e^{\boldsymbol{\beta}^{T} \sum_{j} y_{ij} \boldsymbol{x}_{ij}}}{\sum_{\boldsymbol{z}_{i} \in \mathcal{S}_{n_{j}, k_{i}}} e^{\boldsymbol{\beta}^{T} \sum_{j} z_{ij} \boldsymbol{x}_{ij}}}$$

The conditional probability does not depend on b_i . Therefore, we consider the conditional MLE as

$$\hat{oldsymbol{eta}}_{CML} = rg \max_{oldsymbol{eta}} \ oldsymbol{eta}^T \left(\sum_{i,j} y_{ij} oldsymbol{x}_{ij}
ight) - \sum_{i=1}^N \log \left(\sum_{oldsymbol{z}: \sum_j z_j = \sum_j y_{ij}} e^{oldsymbol{eta}^T \sum_j z_{ij} oldsymbol{x}_{ij}}
ight)$$

Logistic regression with random intercept — Conditional MLE

- ightharpoonup Conditional MLE estimates eta and bypass the random intercepts.
- Conditional MLE is tractable without integral.
- \triangleright S_{n_i,k_i} contains all binary vectors of length n_j that sum up to k_i .
- ightharpoonup Complex computation for large n_i .

Logistic regression with random intercept — Fixed Sample Approximation

The integral involved in the log-likelihood function:

$$\frac{1}{\sigma} \int_{-\infty}^{\infty} e^{h_i(\boldsymbol{\beta}; u)} du = \frac{1}{\sigma} \int_{-\infty}^{\infty} e^{\ell_i(\boldsymbol{\beta}; u)} e^{-\frac{u^2}{2\sigma^2}} du = \int_{-\infty}^{\infty} e^{\ell_i(\boldsymbol{\beta}; u/\sigma)} e^{-u^2/2} du$$

- Fixed Sample Approximation:
 - ▶ Draw a weighted sample (u_s, w_s) from $\mathcal{N}(0, 1)$.
 - Approximate the integral by

$$\int_{-\infty}^{\infty} e^{\ell_i(\boldsymbol{\beta}; u/\sigma)} e^{-u^2/2} du \approx \sqrt{2\pi} \sum_{s=1}^{S} w_s e^{\ell_i(\boldsymbol{\beta}; u_s/\sigma)}$$

Logistic regression with random intercept — Quadratic Approximation

$$\int_{-\infty}^{\infty} e^{\ell_i(\boldsymbol{\beta}; u/\sigma)} e^{-u^2/2} du \quad \text{with} \quad \ell_i(\boldsymbol{\beta}, u) = k_i u - \sum_{i=1}^{n_j} \log(1 + e^{u + \boldsymbol{\beta}^T \boldsymbol{x}_{ij}})$$

- Quadratic Approximation:
 - ▶ We find the following quadratic approximation to the second term in ℓ_i :

$$\sum_{j=1}^{n_j} \log(1 + e^{u + \boldsymbol{\beta}^T \boldsymbol{x}_{ij}}) \approx C_{0j} + C_{1j}u + \frac{1}{2}C_{2j}u^2$$

with

$$C_{0j} = \sum_{j=1}^{n_j} \log(1 + e^{\boldsymbol{\beta}^T \boldsymbol{x}_{ij}}), \quad C_{1j} = \sum_{j=1}^{n_j} \frac{e^{\boldsymbol{\beta}^T \boldsymbol{x}_{ij}}}{1 + e^{\boldsymbol{\beta}^T \boldsymbol{x}_{ij}}}, \quad C_{2j} = \sum_{j=1}^{n_j} \frac{e^{\boldsymbol{\beta}^T \boldsymbol{x}_{ij}}}{\left(1 + e^{\boldsymbol{\beta}^T \boldsymbol{x}_{ij}}\right)^2}$$

lacktriangle The integral is now tractable in the form of $\int e^{C_{0j}+(C_{1j}+k_i)u-(1-C_{2j})u^2/2}du$.

Logistic regression with random intercept — Laplace Approximation

We consider the integral

$$\int e^{h(x)} dx$$

If we approximate h(x) at its maximum by

$$h(x) \approx h_{max} + \frac{1}{2}(x - x_{max})^2 \left(-\frac{d^2h}{dx^2} \Big|_{x = x_{max}} \right)$$

(why no first-order term?)

Then we have

$$\int_{-\infty}^{\infty} e^{h(x)} dx \approx \sqrt{2\pi} h_{max} \sqrt{-\frac{d^2 h}{dx^2}} \Big|_{x=x_{max}}$$

Similar idea as the quadratic approximation — but taken at the maximum.

Logistic regression with random intercept — Summary

- ▶ MLE is difficult to maximize because of the integral.
- Approximate the integral in a tractable way:
 - ► Fixed Sample Approximation replace integral by weighted sum.
 - Quadratic Approximation approximate exponent by quadratic function.
 - ▶ Laplace Approximation Taylor expansion of the exponent at the maximum.
- Conditional MLE: bypass the integral by considering a conditional likelihood.
- Choice of models:
 - Small n_i: conditional MLE.
 - Large n_i ($\gg N$): fixed-effect models with dummy variables.
 - ▶ Large N or moderate n_i : random-effect models.

Mixed Models with Multiple Random Effects

Now we consider the following model:

$$\mathbb{P}[y_{ij} = 1] = \mu(\boldsymbol{\beta}^T \boldsymbol{x}_{ij} + \boldsymbol{b}_i^T \boldsymbol{z}_{ij})$$

with $\boldsymbol{b}_i \sim \mathcal{N}(0, \boldsymbol{D}_*)$.

Why D_* not $\sigma^2 D$?

We will focus on the logistic regression.

Logistic Regression with Multiple Random Effects

$$\mathbb{P}[y_{ij} = 1] = \frac{e^{\boldsymbol{\beta}^T \boldsymbol{x}_{ij} + \boldsymbol{b}_i^T \boldsymbol{z}_{ij}}}{1 + e^{\boldsymbol{\beta}^T \boldsymbol{x}_{ij} + \boldsymbol{b}_i^T \boldsymbol{z}_{ij}}}$$

with $\boldsymbol{b}_i \sim \mathcal{N}(0, \boldsymbol{D}_*)$.

The log-likelihood function: (let $oldsymbol{D}_- = oldsymbol{D}_*^{-1}$)

$$\ell(\boldsymbol{\beta}, \boldsymbol{D}_{-}) = \frac{N}{2} \log |\boldsymbol{D}_{-}| + \boldsymbol{\beta}^{T} \boldsymbol{r} + \sum_{i=1}^{N} \log \int_{\mathbb{R}^{k}} e^{h_{i}(\boldsymbol{\beta}; \boldsymbol{u})} d\boldsymbol{u} + \text{const}$$

with

$$h_i(\boldsymbol{\beta}; \boldsymbol{u}) = \boldsymbol{k}_i^T \boldsymbol{u} - \frac{1}{2} \boldsymbol{u}^T \boldsymbol{D}_{-} \boldsymbol{u} - \sum_{j=1}^{n_i} \log(1 + e^{\boldsymbol{\beta}^T \boldsymbol{x}_{ij} + \boldsymbol{b}_i^T \boldsymbol{z}_{ij}})$$

and $k_i = \sum_{j=1}^{n_i} y_{ij} \boldsymbol{z}_{ij}$ and $r = \sum_{i=1}^{N} \sum_{j=1}^{n_i} y_{ij} \boldsymbol{x}_{ij}$.

 $Solution: \ Laplace \ Approximation + \ Penalized \ Quasi-likelihood.$

Generalized Linear Mixed Models via Exponential Families

Exponential Family: (in natural parameters)

$$f(y;\theta) = e^{\theta y - b(\theta) - c(y)}$$

► GLMM via exponential family:

$$y_{ij} \mid \boldsymbol{b}_i \sim f(y; \boldsymbol{\beta}^T \boldsymbol{x}_{ij} + \boldsymbol{b}_i^T \boldsymbol{z}_{ij}), \quad \boldsymbol{b}_i \sim \mathcal{N}(0, \boldsymbol{D}_*)$$

► For example, in logistic regression,

$$f(y;\theta) = e^{\theta y - \log(1 + e^{\theta})}$$

Generalized Linear Mixed Models via Exponential Families

► The log-likelihood function:

$$\ell(\boldsymbol{\beta}, \boldsymbol{D}_*) = -\frac{N}{2} \log |\boldsymbol{D}_*| + \sum_{i=1}^N \log \int e^{\ell_i(\boldsymbol{\beta}, \boldsymbol{u}) - \boldsymbol{u}^T \boldsymbol{D}_*^{-1} \boldsymbol{u}/2} d\boldsymbol{u}$$

with

$$\ell_i(oldsymbol{eta}, oldsymbol{u}) = \sum_{i=1}^{n_i} \left[(oldsymbol{eta}^T oldsymbol{x}_{ij} + oldsymbol{u}^T oldsymbol{z}_{ij}) y_{ij} + b(oldsymbol{eta}^T oldsymbol{x}_{ij} + oldsymbol{u}^T oldsymbol{z}_{ij})
ight]$$

► Solution: Laplace Approximation + Penalized Quasi-likelihood

Penalized Quasi-likelihood

- Let $\ell_{LA}(\beta, D_*; u_1^*, \dots, u_N^*)$ be the Laplace approximation of the log-likelihood function at maximums $u_i, i = 1, \dots, N$.
- Let the penalized quasi-likelihood function be

$$\ell_{PQL}(oldsymbol{eta},oldsymbol{u}_1,\ldots,oldsymbol{u}_N;oldsymbol{D}_*) = \sum_{i=1}^N \ell_i(oldsymbol{eta},oldsymbol{u}) - rac{1}{2}\sum_{i=1}^N oldsymbol{u}_i^Toldsymbol{D}_*^{-1}oldsymbol{u}_i$$

- ► The LA + PQL algorithm:
 - Initialized the estimators.
 - ▶ Update $u_i^*, i = 1, ..., N$ according to ℓ_{PQL}
 - ▶ Update D_* according to ℓ_{LA} .
 - Update β according to ℓ_{PQL} .
 - Repeat until convergence.

Marginal Model

Now we consider a marginal model:

$$\mathbb{E}[\boldsymbol{y}_i] = \mu(\boldsymbol{X}_i\boldsymbol{\beta}), \quad \text{Cov}(\boldsymbol{y}_i) = \boldsymbol{V}_i$$

lacktriangle Often, we assume certain structure for $oldsymbol{V}_i$. For example:

$$oldsymbol{V}_i = oldsymbol{D}_i^{1/2} oldsymbol{R} oldsymbol{D}_i^{1/2},$$

where D_i is diagonal with elements $\mu(1-\mu)$, and R is assumed to be an exchangeable **correlation** matrix.

▶ To solve the marginal model, we can use GEE:

$$\sum_{i=1}^N oldsymbol{X}_i^T oldsymbol{\mu}_i' oldsymbol{V}_i^{-1} (oldsymbol{y}_i - oldsymbol{\mu}_i) = oldsymbol{0}$$

Example

We consider the example of Problem 6 of Section 7.5 in the textbook. The dataset looks like

```
source("./Data/MixedModels/Chapter07/psdat.r")
head(psdat)
```

hrr	visitin	visitout	visittot	black	age:	10 female	days	sfu
1	1	3	0	3	0	8.3	0	2
2	1	23	4	27	0	8.0	1	933
3	1	21 2	24	45	1	7.9	0	301
4	1	13	5	18	0	6.7	0	411
5	1	39	18	87	0	7.7	0	1325
6	1	0	0	0	1	8.1	0	12

Example — GLMM with PQL

```
Linear mixed-effects model fit by maximum likelihood
   Data: psdat
   Log-likelihood: NA
Fixed: visittot ~ black + female + age10 + age10^2
(Intercept) black female
                                        age10
4.99719386 -0.02701705 -0.02863541 -0.14080444
Random effects:
Formula: ~1 | hrr
        (Intercept) Residual
StdDev
       0.1973408 5.820526
```

Example — GLMM with MLE

1 library(lme4)

```
2 glmer(visittot~black+female+age10+age10^2 + (1|hrr),
      data=psdat,
3
  family=poisson.
4
   nAGQ=1)
5
Generalized linear mixed model fit by maximum likelihood
                                                     (Laplace Approximation) ['glmerMod']
Family: poisson (log)
Formula: visittot ~ black + female + age10 + age10^2 + (1 | hrr)
Data: psdat
    ATC
             BIC logLik deviance df.resid
342622.9 342658.9 -171306.5 342612.9
                                       9861
Random effects:
Groups Name
            Std Dev
hrr (Intercept) 0.2967
Number of obs: 9866, groups: hrr, 306
Fixed Effects:
 (Intercept) black
                            female
                                        age10
    4.92558 -0.04742 -0.02831
                                     -0.13820
```

Example — GLMM with MLE

- ► The nAGQ specifies how to approximate the integral in the log-likelihood function.
- ▶ nAGQ: parameter for Adaptive Gauss-Hermite Quadrature.
- ▶ nAGQ=1: Laplace Approximation
- ► Higher nAGQ: better approximation but slower computation.

Example — GEE

```
1 library(gee)
gee(visittot~black+female+age10+age10^2,
      id=hrr.
3
      data=psdat,
  family=poisson.
5
      corstr="exchangeable")
GEE:
      GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
 gee S-function, version 4.13 modified 98/01/27 (1998)
Model:
 Link:
                          Logarithm
 Variance to Mean Relation: Poisson
 Correlation Structure:
                          Exchangeable
Coefficients:
 (Intercept) black
                           female
                                       age10
 5.02944411 -0.03652173 -0.02930477 -0.14431704
Estimated Scale Parameter: 41.755
Number of Iterations: 4
```

Example — family argument

- ► The family argument specifies the error structure and link function of the generalized linear model.
- ► The formula is dist(link), e.g. binomial(link='logit') is the logistic model.
- Common families:
 - Binomial/Bernoulli: binomial link: 'logit', 'probit', 'log', 'cloglog'
 - Poisson: poisson
 link: 'log', 'identity', 'sqrt'
 - ► Gaussian: gaussian link: 'identity', 'log', 'inverse'