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Marginal v.s. Conditional Model

Suppose bi is a random effect.

I Conditional Model: we specify p(Yij | bi,θ)
I Marginal Model: we specify E(Yij | θ) and Var(Yij | θ)

Is LME a marginal or conditional model?

BOTH!
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Marginal v.s. Conditional Model

When we consider nonlinear models, the two models are usually different.

I Conditional Model involves an arbitrary conditional distribution for Yij | bi,θ —
may include interaction terms between bi and θ.

I Marginal Model assumes the following form:

Yij = E[Yij | θ] + ηij ,

with ηij as the deviation of Yij from its mean, which follows a specified
covariance structure.



Nonlinear Marginal Model

We generalize the linear mixed effects model to a nonlinear mixed model in
which random effects enter the model in a linear fashion. This type of
mixed model will be called marginal.

Nonlinear Marginal Model:
yi = fi(θ) + ηi,

with fi a nonlinear function and Cov(ηi) = Vi(θ).

Why the above model is a marginal model?

I fi(θ) specifies the marginal mean.

I Vi(θ) specifies the marginal covariance.

Sometimes, we further specify ηi to obtain the desired covariance structure.



Nonlinear Marginal Model

We generalize the linear mixed effects model to a nonlinear mixed model in
which random effects enter the model in a linear fashion. This type of
mixed model will be called marginal.

Nonlinear Marginal Model:
yi = fi(θ) + ηi,

with fi a nonlinear function and Cov(ηi) = Vi(θ).

Why the above model is a marginal model?

I fi(θ) specifies the marginal mean.

I Vi(θ) specifies the marginal covariance.

Sometimes, we further specify ηi to obtain the desired covariance structure.



Fixed Matrix of Random Effects

Consider the following nonlinear model with additive random-effects

yi = fi(β) +Zibi + εi,

with
E(bi) = 0, E(εi) = 0, Cov(bi) = σ2D, Cov(εi) = σ2I.

I Is this a conditional or marginal model?
I Marginal, because it specifies the mean and variance of yi.
I Not conditional, because the true distribution yi | bi may be beyond linear.

I Do we need other conditions?
I fi(β)’s have to be identifiable. That is, fi(β1) = fi(β2) for all i implies β1 = β2.
I It is called mean identifiability.
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Fixed Matrix of Random Effects — Estimate β

Nonlinear Least Squares (NLS):

min
β

N∑
i=1

‖yi − fi(β)‖2

The corresponding estimation equations:

N∑
i=1

(
∂fi
∂β

)T
(yi − fi(β)) = 0

The minimizer β̂(NLS) (an M-estimator) is consistent because

lim
N→∞

N−1
N∑
i=1

(
∂fi
∂β

)T
(yi − fi(β)) = 0.



Fixed Matrix of Random Effects — Estimate β

A more efficient way (assuming D is known) is (weighted NLS)

min
β

N∑
i=1

[yi − fi(β)]T (I +ZiDZT
i )
−1[yi − fi(β)]

The corresponding estimation equations are

N∑
i=1

(
∂fi
∂β

)T
(I +ZiDZ

T
i )
−1[yi − fi(β)] = 0



Fixed Matrix of Random Effects — MLE

If we assume bi’s and εi’s are normal, that is

yi ∼ N (fi(β), σ
2Vi)

The log-likelihood function is

`(β, σ2,D) = −1

2

{
Nt log σ

2+

N∑
i=1

[
log |Vi|+ σ−2(yi − fi(β))TV −1i (yi − fi(β))

]}



Fixed Matrix of Random Effects — Distribution-free Estimation
I Pooled Variance estimator

I Minimization:

Smin = min
β,γ1,...,γN

N∑
i=1

‖yi − fi(β)−Ziγi‖2

I Estimation of variance: σ̂2 = Smin/d.f..

I Method of Moments
I Calculate b̂i = (ZTi Zi)

−1ZTi (yi − fi(β̂(NLS))).
I Estimate

σ̂2D =
1

N

N∑
i=1

b̂ib̂
T
i − σ̂2

N∑
i=1

(ZTi Zi)
−1

I Variance Least Squares (VLS)
I Get êi = yi − fi(β̂(NLS)).
I minimize

min
σ2,D

N∑
i=1

‖êiêTi − σ2Vi‖2F



Fixed Matrix of Random Effects — Asymptotic Results

Nonlinear marginal models are similar to LME models:

I NLS: consistency and asymptotic normality

I weighted NLS: consistency and asymptotic normality

I Use MM or VLS estimators for D in weighted NLS converges in distribution to
the one using true D.

If both bi and εi are normal,

I The MLEs for β and variance parameters are independent.

I Use of MM or VLS in weighted NLS leads to β estimates asymptotically
equivalent to the MLE.



Varied Matrix of Random Effects

A generalization is that the design matrix of the random effect is also related to β.

yi = fi(β) +Zi(β)bi + εi, i = 1, . . . , N

Because the dependence of Zi on β,

I Weighted NLS has asymptotic normality.

I Weighted NLS is not efficient.

I Need to consider MLE.



Varied Matrix of Random Effects — MLE

Log-likelihood function:

`(β, σ2,D) = −1

2

{
N log σ2 +

N∑
i=1

[
log |Vi(β)|+

1

σ2
eTi (β)V

−1
i (β)ei(β)

]}
,

where
ei(β) = yi − fi(β), Vi(β) = I +Zi(β)DZ

T
i (β).

I Difficulty: both Vi and ei are β-dependent — more complicated gradient.



Varied Matrix of Random Effects — An iterative algorithm

Notice that, if Vi’s are given, the MLE of β is the weighted NLS solution:

min
β

N∑
i=1

eTi (β)V
−1
i ei(β)

An easy estimate for Vi is Vi(β̂) for some estimated β. Therefore, we have the
following iterative algorithm. Iteratively reweighted least squares (IRLS)

1. Start from β̂(0) (estimated from NLS with D = 0)

2. For iteration 1 to K,
I update D̂ and σ̂2 by maximizing conditional likelihood.
I update

β̂(k+1) = argmin
β

N∑
i=1

eTi (β)V
−1
i (β̂(k))ei(β)



Varied Matrix of Random Effects — An iterative algorithm
From the update equation

β̂(k+1) = argmin
β

N∑
i=1

eTi (β)V
−1
i (β̂(k))ei(β)

we know
N∑
i=1

F T
i (β̂(k+1))V −1i (β̂(k))ei(β̂

(k+1)) = 0,

where Fi is the gradient of fi.

I At convergence, the solution β̂ is a fixed point of the first equation.

I The converged value β̂ = limk→∞ β̂
(k) satisfy

N∑
i=1

F T
i (β̂)V −1i (β̂)ei(β̂) = 0



Varied Matrix of Random Effects — GEE

From our previous arguments, the iterative algorithm is to find the solution to

N∑
i=1

F T
i (β)

(
I +Zi(β)DZ

T
i (β)

)−1
(yi − fi(β)) = 0

The above equations are called generalized estimating equations (GEE).

I The estimator is the solution to the GEE.

I The GEE are NOT gradients of the log-likelihood function.

I Need to have an estimate D̂, which is usually obtained by
I distribution-free variance estimator
I solving the score equation of the log-likelihood function.



Varied Matrix of Random Effects — GEE Properties

I GEE is consistent and asymptotically normally distributed.
I Because GEE is a Z-estimator (solution to Ψ(θ) = 0)
I Consistency under consistent estimator D̂ is ensured by the generalized Slutsky’s

theorem.
I Asymptotic normality is ensured by the LLN and delta method.

I GEE is less efficient than MLE.

Cov(β̂IRLS) = σ2

(
N∑
i=1

F T
i V

−1
i Fi

)−1

Cov(β̂ML) = σ2

(
N∑
i=1

F T
i V

−1
i Fi + σ2

N∑
i=1

Ti

)−1
for some positive semi-definite matrix Ti’s.



Varied Matrix of Random Effects — GEE Properties

I GEE and MLE have similar efficiency when
I σ2 is small.
I Or Ti’s are small — when Zi(β) is quite linear in β.

I When the distribution is misspecified, both IRLS and MLE give consistent
estimators.

I When the covariance matrix is misspecified, only IRLS gives a consistent estimator
and asymptotic normality.



Three Types of Nonlinear Marginal Models

I Type I nonlinear marginal model:

y = f(β) + η, Cov(η) = V (γ)

I Type II nonlinear marginal model:

y = f(β) + η, Cov(η) = V (β,γ)

I Type III nonlinear marginal model:

y = f(θ) + η, Cov(η) = V (θ)

I identifiability: same mean and variance imply same parameters.

I mean-identifiability: same mean implies same parameters.



Total Generalized Estimating Equations

I For Type I models, IRLS is the same as MLE.

I For Type II models, IRLS is easy to implement but less efficient than MLE.

I For Type III models, IRLS does not work because the mean and variance share the
same parameter.



Total Generalized Estimating Equations

Assume the following Type III model:

y = f(θ) + η, Cov(η) = V (θ)

Under normal assumption, we have the log-likelihood function:

`(θ) = −1

2

{
log |V |+ (y − f)TV −1(y − f)

}
The estimating equation for MLE is

F TV −1(y − f) + 1

2
GT

[(
V T (y − f)

)
⊗
(
V T (y − f)

)
− vec(V −1)

]
= 0,

where F = ∂f/∂θ and G = ∂vec(V )/∂θ.



Total Generalized Estimating Equations

For general cases (NOT normally distributed),
we consider the following total GEE (TGEE):

F TV −1(y − f) + νGT
[(
V T (y − f)

)
⊗
(
V T (y − f)

)
− vec(V −1)

]
= 0

for some ν > 0.



Total Generalized Estimating Equations

I θ̂TGEE is consistent and asymptotically normal for any ν > 0.

I Let ξ = V −1/2(y − f) and Var(ξi) = κ− 1. (κ the kurtosis)

I If E[ξ3i ] = 0,

Cov
(
θ̂TGEE

)
= (P + νQ)−1

(
P + ν2(κ− 1)Q

)
(P + νQ)−1,

where
P = F TV −1F , Q = GT (V −1 ⊗ V −1)G.

I Minimum variance attained at ν = 1/(κ− 1). (See Table 6.3 in textbook)

I For MLE under normal assumption,

Cov
(
θ̂ML

)
=

(
P +

1

2
Q

)−1



Total Generalized Estimating Equations

For mixed-effect models

yi = fi(θ) + ηi, Cov(ηi) = Vi(θ),

the TGEE is the solution to

N∑
i=1

{
F T
i V

−1
i (yi − fi) + νGT

i

[(
V −1i (yi − fi)

)
⊗
(
V −1i (yi − fi)

)
− vec(V −1i )

]}
= 0

The components in the variance are

P =

N∑
i=1

F T
i V

−1
i Fi, Q =

N∑
i=1

GT
i (V

−1
i ⊗ V −1i )Gi.



Expected Newton-Raphson Algorithm for Total GEE

I To solve the TGEE in the form of Ψ(θ) = 0, the Newton-Raphson suggests

θ(k+1) = θ(k) −
(
∂Ψ

∂θ

∣∣∣
θ(k)

)−1
Ψ(θ(k))

I The expected Newton-Raphson (ENR) algorithm replaces the Jacobian with its
expectation and set

θ(k+1) = θ(k) +
(
P (θ(k)) + νQ(θ(k))

)−1
Ψ(θ(k))



Example: LME model
Consider the LME model:

yi =Xiβ +Zibi + εi,

with Cov(bi) = σ2D and Cov(εi) = σ2I.
I The parameter vector is θ = (βT , σ2, vec(D)T ).
I Using notations for the marginal models, we have

Fi = [Xi,0,0], Gi = [0, vec(I),Zi ⊗Zi].
I The TGEEs are:

N∑
i=1

XT
i V

−1
i (yi −Xiβ) = 0

N∑
i=1

(yi −Xiβ)
TV −2i (yi −Xiβ)− tr(V −1i ) = 0

N∑
i=1

ZT
i V

−1
i (yi −Xiβ)(yi −Xiβ)

TV −1i Zi −ZT
i V

−1
i Zi = 0



Example — Log-Gompertz Curve

Consider a Gompertz Growth Curve model:

Y (t) = Ae−e
b−ct



Example — Log-Gompertz Curve

By re-parametrization, we have the following model

y = β1 − β2e−β3t + ε.

By considering random intercept and adding indices, we have

yij = (β1 + bi)− β2e−β3tij + εij

with E[εij ] = E[bi] = 0 and Var(εij) = σ2, Var(bi) = σ2d.



Example — Log-Gompertz Curve

yij = (β1 + bi)− β2e−β3tij + εij

As a nonlinear marginal model, we have

I β = (β1, β2, β3)
T .

I fi = β1 − β2e−β3ti .
I Cov(yi) = σ2I + σ2d11T .



Example — Log-Gompertz Curve — NLS

1 data = read.csv("./Data/MixedModels/Chapter06/TUMspher.txt")

2

3 fit.nls = nls(lntumvol ~ a1 -a2*exp(-a3*day), data=data ,

4 start=list(a1=5, a2=1, a3 =0.1))

5

6 print(fit.nls)

Nonlinear regression model

model: lntumvol ~ a1 - a2 * exp(-a3 * day)

data: data

a1 a2 a3

6.03797 4.83443 0.08211

residual sum-of-squares: 259.8

Number of iterations to convergence: 5

Achieved convergence tolerance: 7.034e-07



Example — Log-Gompertz Curve — NLME
1 library(nlme)

2 fit.nlme = nlme(lntumvol ~ a1 -a2*exp(-a3*day),

3 fixed = a1+a2+a3~1,

4 random = a1~1|id,

5 data=data ,

6 start=c(5,1 ,0.1))

7 print(fit.nlme)

Nonlinear mixed-effects model fit by maximum likelihood

Model: lntumvol ~ a1 - a2 * exp(-a3 * day)

Data: data

Log-likelihood: -328.624

Fixed: a1 + a2 + a3 ~ 1

a1 a2 a3

5.93781796 4.74846672 0.08549033

Random effects:

Formula: a1 ~ 1 | id

a1 Residual

StdDev: 0.6293778 0.4023551

Number of Observations: 590

Number of Groups: 12



Example — Log-Gompertz Curve — TGEE

I Since fi = β1 − β2e−β3ti , we have

Fi,β = (1,−e−β3ti , β2ti � e−β3ti)

I Since Vi = σ2(I + d11T ),

Gi,β = 0, Gi,σ2 = vec(I) + d1, Gi,d = σ21.
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Example — Log-Gompertz Curve — TGEE
1 step <- function(a1, a2, a3, sigma , d, nu){

2 P = 0

3 Q = 0

4 TGEE = rep(0, 5)

5 for(i in 1:12){

6 sub = data[data$id==i,]
7 ni = nrow(sub)

8 Vi = sigma^2 * (diag(ni) + d)

9 Vi_inv = (diag(ni) - 1/(ni+1/d))/sigma ^2

10 eps = sub$lntumvol - a1 + a2 * exp(-a3 * sub$day)
11 Fi = cbind(1, -exp(-a3 * sub$day), a2*sub$day*exp(-a3*sub$day))
12 P = P + t(Fi)%*%Vi_inv%*%Fi

13 Gi_sig = c((diag(ni) + d))

14 Gi = cbind(Gi_sig , sigma ^2)

15 Q = Q + t(Gi)%*%kronecker(Vi_inv , Vi_inv)%*%Gi

16 TGEE [1:3] = TGEE [1:3] + t(Fi)%*%Vi_inv%*%eps

17 veps = Vi_inv%*%eps

18 TGEE [4:5] = TGEE [4:5] + nu* t(Gi)%*%(kronecker(veps , veps)-c(Vi_

inv))}

19 return(solve(bdiag(P, nu*Q),TGEE))

20 }



Example — Log-Gompertz Curve — TGEE

1 theta = c(5, 1, 0.1, 1, 1)

2 while(T){

3 delta = step(theta[1], theta[2], theta[3], theta[4], theta[5],

0.5)

4 if(norm(delta) <= 0.0001) break

5 else theta = theta + delta

6 }

7

8 print(theta)

The TGEE estimators are:

β̂1 = 5.9378, β̂2 = 4.7485, β̂3 = 0.0855, σ̂2 = 0.1618, d̂ = 2.4468


