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Marginal v.s. Conditional Model

Suppose b; is a random effect.
» Conditional Model: we specify p(Y;; | b;,0)
» Marginal Model: we specify E(Y;; | ) and Var(Y;; | 0)

Is LME a marginal or conditional model?



Marginal v.s. Conditional Model

Suppose b; is a random effect.
» Conditional Model: we specify p(Y;; | b;,0)
» Marginal Model: we specify E(Y;; | ) and Var(Y;; | 0)

Is LME a marginal or conditional model? BOTH!



Marginal v.s. Conditional Model

When we consider nonlinear models, the two models are usually different.

» Conditional Model involves an arbitrary conditional distribution for Y;; | b;,0 —
may include interaction terms between b; and 6.

> Marginal Model assumes the following form:
Yij = E[Yi; | 0] + nij,

with 7;; as the deviation of Y;; from its mean, which follows a specified
covariance structure.



Nonlinear Marginal Model

We generalize the linear mixed effects model to a nonlinear mixed model in
which random effects enter the model in a linear fashion. This type of
mixed model will be called marginal.

Nonlinear Marginal Model:
yi = fi(0) + ni,
with f; a nonlinear function and Cov(n;) = V;(0).

Why the above model is a marginal model?



Nonlinear Marginal Model

We generalize the linear mixed effects model to a nonlinear mixed model in
which random effects enter the model in a linear fashion. This type of
mixed model will be called marginal.

Nonlinear Marginal Model:
yi = fi(0) +n,

with f; a nonlinear function and Cov(n;) = V;(0).

Why the above model is a marginal model?
> fi(0) specifies the marginal mean.
» V;(0) specifies the marginal covariance.
Sometimes, we further specify ; to obtain the desired covariance structure.



Fixed Matrix of Random Effects

Consider the following nonlinear model with additive random-effects

yi = fi(B) + Z;b; + €,

with
E(b;)) =0, E(e) =0, Cov(b)=0c’D, Cov(e) =01
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Fixed Matrix of Random Effects

Consider the following nonlinear model with additive random-effects

yi = fi(B) + Z;b; + €,

with
E(b;)) =0, E(e) =0, Cov(b)=0c’D, Cov(e) =01

» Is this a conditional or marginal model?

» Marginal, because it specifies the mean and variance of y;.
» Not conditional, because the true distribution y; | b; may be beyond linear.

» Do we need other conditions?

> f:(B)'s have to be identifiable. That is, f;(31) = fi(B2) for all i implies 31 = 35.
» [t is called mean identifiability.



Fixed Matrix of Random Effects — Estimate (3
Nonlinear Least Squares (NLS):

mln ZH% £i(B)?

The corresponding estimation equations:

g(iﬁ)T<yi—fi<ﬁ>> ~o

The minimizer 3(NVLS) (an M-estimator) is consistent because

i v (XY ey =0




Fixed Matrix of Random Effects — Estimate (3

A more efficient way (assuming D is known) is (weighted NLS)

mln Z 1"(I+ Z;DZI) [y — fi(B)]

The corresponding estimation equations are

al af\" Ty—1
(I+2Z,DZ;) [y — fi(B)] =0
; <85> Y



Fixed Matrix of Random Effects — MLE

If we assume b;'s and €;'s are normal, that is

yi ~ N(£:(B),0*V;)

The log-likelihood function is

N
((B,0% D) = —;{Nt logo®+  [log|Vil + 0 *(yi = £i(B)TV; " (wi — £i(8))] }

i=1



Fixed Matrix of Random Effects — Distribution-free Estimation

» Pooled Variance estimator
» Minimization:
Smin - min Z Hyl fz Z271||2
B, N i—1
> Estimation of variance: 62 = S,,i,/d.f..
» Method of Moments
> Calculate b, = (Z1'Z,))"1 Z1 (y;
> Estimate

— Fi(BNE)).

o 1 N N

o?D == "bb] —6°> (2] Z)!
=1

» Variance Least Squares (VLS)
> Get él =Y — fl(B(NLS))
> minimize

min Z léiel — o Vi||%
g X



Fixed Matrix of Random Effects — Asymptotic Results

Nonlinear marginal models are similar to LME models:
» NLS: consistency and asymptotic normality
» weighted NLS: consistency and asymptotic normality

» Use MM or VLS estimators for D in weighted NLS converges in distribution to
the one using true D.

If both b; and €; are normal,
» The MLEs for 3 and variance parameters are independent.

» Use of MM or VLS in weighted NLS leads to 3 estimates asymptotically
equivalent to the MLE.



Varied Matrix of Random Effects

A generalization is that the design matrix of the random effect is also related to 3.

yi=Ffi(B)+Z;(B)b; +€, i=1,...,N

Because the dependence of Z; on 3,
> Weighted NLS has asymptotic normality.
> Weighted NLS is not efficient.
> Need to consider MLE.



Varied Matrix of Random Effects — MLE

Log-likelihood function:

N
B,0% D) = —2 I Nlogo? + 3 |tog [Vi(8) | + —eL BV, (B)es(B) | b
2 o

=1

where

ei(B) =y — fi(B), Vi(B)=I+Zi(B)DZ(B).

» Difficulty: both V; and e; are 3-dependent — more complicated gradient.



Varied Matrix of Random Effects — An iterative algorithm

Notice that, if V;'s are given, the MLE of 3 is the weighted NLS solution:

min e;fp(,B)Vi_lei(ﬁ)

A~

An easy estimate for V; is V;(3) for some estimated 3. Therefore, we have the
following iterative algorithm. Iteratively reweighted least squares (IRLS)

1. Start from B(0) (estimated from NLS with D = 0)

2. For iteration 1 to K,

» update D and 62 by maximizing conditional likelihood.
P> update

N
BUEHD = argmin Y " e (B)V; ' (BV)ei(B)
B

i=1



Varied Matrix of Random Effects — An iterative algorithm

From the update equation

N
B¥HY = argmin Y ef (B)V; (B*))ei(8)
B =
we know N
Z F;T(B(kJrl))V;_l(,é(k)>ez(,é(k+l)> =0,
=1

where Fj is the gradient of f;.
> At convergence, the solution B is a fixed point of the first equation.

» The converged value B = limy_,o B(k) satisfy

N
S FT(B)V, ! (B)ei(B) = 0
=1



Varied Matrix of Random Effects — GEE

From our previous arguments, the iterative algorithm is to find the solution to

N
N CFI(B) (I+2.8)D2E(B) " (i f(8) =0
=1

The above equations are called generalized estimating equations (GEE).
» The estimator is the solution to the GEE.
» The GEE are NOT gradients of the log-likelihood function.

> Need to have an estimate D, which is usually obtained by

» distribution-free variance estimator
> solving the score equation of the log-likelihood function.



Varied Matrix of Random Effects — GEE Properties

» GEE is consistent and asymptotically normally distributed.
» Because GEE is a Z-estimator (solution to ¥(6) = 0)
» Consistency under consistent estimator D is ensured by the generalized Slutsky's
theorem.
» Asymptotic normality is ensured by the LLN and delta method.

» GEE is less efficient than MLE.

N

-1
Cov(BrrLs) = 0 <Z F}TV;;_1E>

=1
COV(,BML =0 (ZFTV IR, +UZZT>

for some positive semi-definite matrix T;'s.

-1



Varied Matrix of Random Effects — GEE Properties

» GEE and MLE have similar efficiency when

> o2 is small.
» Or T;'s are small — when Z;(3) is quite linear in 3.

» When the distribution is misspecified, both IRLS and MLE give consistent
estimators.

» When the covariance matrix is misspecified, only IRLS gives a consistent estimator
and asymptotic normality.



Three Types of Nonlinear Marginal Models

» Type | nonlinear marginal model:

y=f(B)+n, Cov(n)=V(y)

» Type Il nonlinear marginal model:

y=Ff(B) +n, Cov(n)=V(B)

» Type Il nonlinear marginal model:
y=f(6)+n, Cov(n)=V(0)

> identifiability: same mean and variance imply same parameters.

> mean-identifiability: same mean implies same parameters.



Total Generalized Estimating Equations

» For Type | models, IRLS is the same as MLE.
» For Type Il models, IRLS is easy to implement but less efficient than MLE.

» For Type Ill models, IRLS does not work because the mean and variance share the
same parameter.



Total Generalized Estimating Equations

Assume the following Type Il model:
y=f(0)+n, Cov(n) =V()
Under normal assumption, we have the log-likelihood function:
1 —
(0) = =5 {log|V|+ (- 'V (y- £}
The estimating equation for MLE is
_ 1 _
FIViy— 1)+ 567 (VI - 1) @ (VI - £)) - vee(V )] =0,

where F' = 0f/00 and G = dvec(V')/08.



Total Generalized Estimating Equations

For general cases (NOT normally distributed),
we consider the following total GEE (TGEE):

FI'Vviiy—f)+vGT [(VIy— )@ (Viy—Ff) —vec(V )] =0

for some v > 0.



Total Generalized Estimating Equations

v

OrcEE is consistent and asymptotically normal for any v > 0.
> Let £ =V /2(y — f) and Var(&) = k — 1. (k the kurtosis)
If B[] = 0,

v

Cov (éTGEE) = (P+vQ)™! (P+ V2 (k — Q) (P + Q)L

where

P=F'vF, Q=GT'v'levHa.

» Minimum variance attained at v = 1/(k — 1). (See Table 6.3 in textbook)

v

For MLE under normal assumption,

cov (61) = (P 2Q)



Total Generalized Estimating Equations

For mixed-effect models
yi = fi(0) +mi, Cov(n;) = Vi(0),

the TGEE is the solution to

N
S{EFIV (i — )+ vGT (Vi i — 1)) @ (Vo (s — ) — vee(V )]} = 0

i=1

The components in the variance are

N N
P= F'V7'F, Q=Y GI(V'eVv, G,
=1 =1



Expected Newton-Raphson Algorithm for Total GEE

» To solve the TGEE in the form of ¥(#) = 0, the Newton-Raphson suggests

0w !
g+l — g(k) _ (ae e(k)> w6k

» The expected Newton-Raphson (ENR) algorithm replaces the Jacobian with its
expectation and set

—1
gD — g(k) 4 (P(o(k>) + I/Q(H(k))> o (6™")



Example: LME model
Consider the LME model:
yi = XiB + Z;b; + €,
with Cov(b;) = 02D and Cov(e;) = o°1.
» The parameter vector is 8 = (87,02, vec(D)T).
» Using notations for the marginal models, we have
F, = [Xz7 0, 0]7 G = [O,VGC(I), Z; ® Z’L]
» The TGEEs are:
N
S X!V yi— XiB) =0
i=1
N
D (wi— XiB) 'V, 2y — Xi) — te(V; 1) =0

i=1

N
> zI'Vi Ny — XiB)(yi — XiB) 'V, 2, - ZI'V, 'z, =0
=1



Example — Log-Gompertz Curve

Consider a Gompertz Growth Curve model:

log(Tumor Volume)

T T T T T T T T

[ 10 20 3 40 50 60 7 80
Time (days)



Example — Log-Gompertz Curve

By re-parametrization, we have the following model
y=p1— Poe P te
By considering random intercept and adding indices, we have
yij = (B1 +bi) = Pae™ P00 ¢

with E[eij] = E[bz] =0 and Var(eij) = 02, Var(bi) = o2d.



Example — Log-Gompertz Curve

yij = (B1 + bi) — Bae” P + ¢
As a nonlinear marginal model, we have
> 3= (51, P2 B3)".
> fi =P — Pae ot
» Cov(y;) = oI + o2d117.



Example — Log-Gompertz Curve — NLS

data = read.csv("./Data/MixedModels/Chapter06/TUMspher.txt")

1
2

3 fit.nls = nls(lntumvol ~ al-a2*exp(-a3*day), data=data,
4 start=1ist (al=5, a2=1, a3=0.1))
5
6

print (fit.nls)

Nonlinear regression model
model: lntumvol ~ al - a2 * exp(-a3 * day)
data: data
al a2 a3
6.03797 4.83443 0.08211
residual sum-of-squares: 259.8

Number of iterations to convergence: 5
Achieved convergence tolerance: 7.034e-07



Example — Log-Gompertz Curve — NLME

1 library (nlme)

> fit.nlme = nlme(lntumvol ~ al-a2xexp(-a3*day),
3 fixed = al+a2+a371,

4 random = al~1]id,

5 data=data,

6 start=c(5,1,0.1))

7 print (fit.nlme)

Nonlinear mixed-effects model fit by maximum likelihood
Model: 1lntumvol ~ al - a2 * exp(-a3 * day)
Data: data
Log-likelihood: -328.624
Fixed: al + a2 + a3 " 1
al a2 a3
5.93781796 4.74846672 0.08549033

Random effects:
Formula: al ~ 1 | id

al Residual
StdDev: 0.6293778 0.4023551

Number of Observations: 590
Number of Groups: 12



Example — Log-Gompertz Curve — TGEE

» Since f; = 1 — Boe P, we have
Fop=(1,—e ™% Bot; © e F4)
» Since V; = o2(I + d117),

Gip=0, G;,2=vec(I)+dl, G;q=o0"1.
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Fop=(1,—e ™% Bot; © e F4)
» Since V; = o2(I + d117),
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Example — Log-Gompertz Curve — TGEE

1 step <- function(al, a2, a3, sigma, d, nu){
> P =0

3Q =0

4 TGEE = rep(0, 5)

5 for(di in 1:12){

6 sub = data[data$id==1i,]

7 ni = nrow(sub)

8 Vi = sigma”2 * (diag(ni) + d)

9 Vi_inv = (diag(mni) - 1/(ni+1/d))/sigma”2

10 eps = sub$lntumvol - al + a2 * exp(-a3 * sub$day)

11 Fi = cbind (1, -exp(-a3 * sub$day), a2*sub$day*exp(-a3*xsub$day))

12 P =P + t(Fi)%*%Vi_invi*/Fi

13 Gi_sig = c((diag(ni) + d))

14 Gi = cbind(Gi_sig, sigma~2)

15 Q = Q + t(Gi)%*%kronecker (Vi_inv, Vi_inv)%*%Gi

16 TGEE[1:3] = TGEE[1:3] + t(Fi)%*%Vi_inv%*Jeps

17 veps = Vi_invY%*%eps

18 TGEE[4:5] = TGEE[4:5] + nux t(Gi)%*’ (kronecker (veps, veps)-c(Vi_
inv))}

19 return(solve (bdiag(P, nu*Q),TGEE))
U



Example — Log-Gompertz Curve — TGEE

1 theta = ¢c(5, 1, 0.1, 1, 1)
2 while (T){

3 delta = step(thetal[l], theta[2], thetal[3], theta[4], thetal5],
0.5)

4 if (norm(delta) <= 0.0001) break

5 else theta = theta + delta

6}

7

g8 print (theta)

The TGEE estimators are:

B1 = 5.9378, By = 4.7485, B3 = 0.0855, 6% = 0.1618, d = 2.4468



