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Meta-analysis Model

I Observation: A common treatment effect that synthesizes the results of several
studies.

I Model: Build a super-model (the model of models) over several different studies
using random-effect models.

I Methodology: Pulling results from studies on similar objectives to build a powerful
overall model.

I Key assumptions:
I Estimations from each study are assumed to be Gaussian (because of CLT)
I Random effects may be heavy-tailed.



Simple Meta-analysis Model

I n studies estimate a common parameter of interest β by yi with its variance σ2i .

I How to generate an overall estimate for β?

I Naive Average:
I β̂ = n−1

∑n
i=1 yi

I Problem: variance not optimal.

I Weighted Average:
I β̂ =

∑n
i=1 wiyi with wi ∝ 1/σ2

i and
∑n

i=1 wi = 1.
I Problem: result dominated by studies with small σ2

i ’s.
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Simple Meta-analysis Model

I n studies estimate a common parameter of interest β by yi with its variance σ2i .

I Consider a random-effect approach:

yi = β + bi + εi

where bi is a random effect with unknown variance σ2 and εi is an error term
with known variance σ2i

I or, equivalently,
yi ∼ N (β, σ2 + σ2i )

I Is this a LME model?

Not exactly because σi’s are known.
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Simple Meta-analysis Model

yi = β + bi + εi

I yi: study-specific treatments

I β: common treatment effect

I σ2: heterogeneity parameter (variance of the random effect)

Remark:

I We do not specify how each yi and σ2i are obtained.

I The model is built on many other individual studies.



Simple Meta-analysis Model

If σ2 is known, the best linear unbiased estimator (BLUE) for β is

β̂ =

∑n
i=1 yi(σ

2 + σ2i )
−1∑n

i=1(σ
2 + σ2i )

−1 .

Why? Gauss-Markov theorem.

I If σ2 = 0, β̂ is the weighted average.

I If σ2 =∞, β̂ is the naive average.



Simple Meta-analysis Model — Estimation

Write it as an intermedia step in LME model:

yi = Xiβ +Zibi + εi ⇐= yi = β + bi + εi

when Xi = Zi = 1 and when σ2i are known.
Recall what we have from random effects estimation:

min
β,b1,...,bN

N∑
i=1

(
‖yi −Xiβ −Zibi‖2 + bTi D

−1bi

)
Now, it turns to

min
β,b1,...,bn

n∑
i=1

(
(yi − β − bi)2

σ2i
+
b2i
σ2

)



Simple Meta-analysis Model — Estimation

min
β,b1,...,bn

n∑
i=1

(
(yi − β − bi)2

σ2i
+
b2i
σ2

)
When we have estimates β̂ and σ̂2, the solution is

b̂i =
σ̂2

σ̂2 + σ2i
(yi − β̂)

Verify:

I When σ̂2 = 0, b̂i = 0.

I When σ̂2 =∞, b̂i = yi − β̂.



Simple Meta-analysis Model — Estimation

To estimate β and σ2, under normal assumption for yi’s, the log-likelihood function is

`(β, σ2) = −1

2

n∑
i=1

[
log(σ2 + σ2i ) +

(yi − β)2

σ2 + σ2i

]
Solution:

β̂ =

∑n
i=1 yi(σ̂

2 + σ2i )
−1∑n

i=1(σ̂
2 + σ2i )

−1 .

When σ2i = σ21 for all i,

β̂ = ȳ, σ̂2 =
1

n

n∑
i=1

(yi − ȳ)2 − σ21



Simple Meta-analysis Model — Estimation

Other estimators for variance:

I Variance least squares:

min
σ2

n∑
i=1

[
(yi − β̂)2 − σ2i − σ2

]2
The solution is:

σ̂2V LS =
1

n

n∑
i=1

(
(yi − β̂)2 − σ2i

)
I Method of Moments:

ȳ = β
n∑
i=1

(yi − ȳ)2 =
n− 1

n
(nσ2 +

n∑
i=1

σ2i )



Simple Meta-analysis Model — Testing

Test H0 : σ = 0 (no random effect)

I under H0:

Q =

n∑
i=1

σ−2i (yi − β̂0)2 ∼ χ2
n−1,

I β̂0 is the weighted mean.

I Same as the F-test we mentioned in LME.

Test H0 : β = 0 (zero populational mean)

I Wald CI

I PL CI
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Meta-analysis Model with Covariates

Consider more covariates in the meta-analysis model:

yi = βTxi + bi + εi, i = 1, . . . , n,

where bi ∼ N (0, σi).
When εi is Gaussian, we have

yi ∼ N (βTxi, σ
2 + σ2i )

I Example: a multi-center study with different characteristics for the centers.



Meta-analysis Model with Covariates

When σ2 is known, we have

β̂ =

(
n∑
i=1

(σ2 + σ2i )
−1xix

T
i

)−1( n∑
i=1

(σ2 + σ2i )
−1xiyi

)

I When σ2 = 0, we have

β̂0 =

(
n∑
i=1

σ−2i xix
T
i

)−1( n∑
i=1

σ−2i xiyi

)

I When σ2 →∞, we have

β̂OLS =

(
n∑
i=1

xix
T
i

)−1( n∑
i=1

xiyi

)



Meta-analysis Model with Covariates — MLE

The MLE maximizes the loglikelihood function:

`(β, σ2) = −1

2

n∑
i=1

[
log(σ2 + σ2i ) +

(yi − βTxi)2

σ2i + σ2

]
When σ2i = σ21 for all i, we have the closed form solution:

β̂ = β̂OLS , σ̂2 =
1

n

n∑
i=1

(yi − β̂Txi)2 − σ21.



Meta-analysis Model with Covariates — Testing

Consider test H0 : σ2 = 0.
The test statistics:

Q =

n∑
i=1

σ−2i (yi − β̂T0 xi)2

The distribution:
Q ∼ χ2

n−m,

where m is the number of covariates (length of β).



Multivariate Meta-analysis Model with Covariates

When each study estimates a vector parameter (e.g. primary effect and secondary
effect), we observe a vector from each study with known covariance.

yi = βTxi + bi + εi,

where
bi ∼ N (0,D), εi ∼ N (0,Ci)

with unknown D and known Ci.

What if different studies report different numbers of outcomes?



Multivariate Meta-analysis Model

I Suppose we are interested in three parameters (y, s, t):
the primary, secondary, and tertiary outcomes.

I Now we have three different studies that report different outcomes:

y1 =
[
y1
]
, y2 =

[
y2
s2

]
, y3 =

y3s3
t3



I Does it fit into our model?

yi = Xiβ + bi + εi

I If yi has pi elements, we can set Xi of dimension pi ×m, and bi of size pi × 1.

I What about covariance of bi?
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Multivariate Meta-analysis Model

I Define three full observation vectors:

y′1 =

y1s1
t1

 , y′2 =

y2s2
t2

 , y′3 =

y3s3
t3


I Define three truncation matrices:

H1 =
[
1 0 0

]
, H2 =

[
1 0 0
0 1 0

]
, H3 =

1 0 0
0 1 0
0 0 1


I Then we have

yi = Hiy
′
i, for i = 1, 2, 3



Multivariate Meta-analysis Model

I Since yi’s are aligned, we can assume the following model:

y′i = X ′iβ + b′i + ε′i

with b′i ∼ N (0,Ω) and εi ∼ N (0,C ′i)

I Using yi = Hiy
′
i, we have

yi = HiX
′
iβ +Hib

′
i +Hiε

′
i

I Or simply
yi = Xiβ + bi + εi

with Xi = HiX
′
i, bi = Hib

′
i, εi = Hiε

′
i

I Covariance structure:

bi ∼ N (0,HiΩH
T
i ), εi ∼ N (0,HiC

′
iH

T
i ) ∼ N (0,Ci)



Multivariate Meta-analysis Model

Multivariate Meta-analysis Model

yi = Xiβ + bi + εi,

with
bi ∼ N (0,HiΩH

T
i ), εi ∼ N (0,Ci).

I Known: Xi, Hi, Ci
I Unknown parameters: β, Ω

I Dimensions:
I yi : pi × 1, Xi : pi ×m, β : m× 1
I bi : pi × 1, Hi : pi × k, Ω : k × k



Multivariate Meta-analysis Model

If Ω is known:

β̂ =

(
n∑
i=1

XT
i V

−1
i Xi

)−1( n∑
i=1

XT
i V

−1
i yi

)
with Vi = Ci +HiΩH

T
i .

I When Ω = 0,

β̂0 =

(
n∑
i=1

XT
i C

−1
i Xi

)−1( n∑
i=1

XT
i C

−1
i yi

)

I When Ω = σ2I with σ2 →∞,

β̂OLS =

(
n∑
i=1

XT
i (HiH

T
i )−1Xi

)−1( n∑
i=1

XT
i (HiH

T
i )−1yi

)



Multivariate Meta-analysis Model — MLE

I Because yi ∼ N (Xiβ,Vi)

I the log-likelihood function is

`(β,Ω) = −1

2

n∑
i=1

(
log |Vi|+ (yi −Xiβ)TV −1i (yi −Xiβ)

)
I the restricted log-likelihood function is

`R(β,Ω) = `(β,Ω)− 1

2
log

∣∣∣∣∣
n∑
i=1

XT
i V

−1
i Xi

∣∣∣∣∣



Multivariate Meta-analysis Model — Testing

I Consider test H0 : Ω = 0.

I Test statistics:

Q =

n∑
i=1

(yi −Xiβ̂0)
TC−1i (yi −Xiβ̂0)

I distribution:
Q ∼ χ2

d

with d =
∑

i pi −m


