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Linear Growth Curve Model
“Growth Curves”



Linear Growth Curve Model

The dataset on the previous slide:

I Bone density curve over time (2 years)

I 52 persons in the Calcium group and 53 persons in the placebo group

Observations:

I For each person, the bone density curve looks linear in time.

I Intercepts and slopes may differ from person to person.



Linear Growth Curve Model

I To model the linear trend of bone density for each person:

yij = ai0 + ai1tij + εij

I tij : time of j-th measurement for person i.
I yij : bone density for person i at time tij .
I ai0: intercept for person i.
I ai1: slope for person i.
I εij : random noise.

I Heterogeneity in intercept:
ai0 = β0 + bi0

I β0: populational average intercept
I bi0 ∼ N (0, σ2d00): random deviation for person i



Linear Growth Curve Model

I Effect of Calcium on the slope:

ai1 = β1 + β2Ci + bi1

I β1: populational average slope for placebo
I β2: effect of Calcium
I Ci: indicator on person i taking Calcium
I bi1 ∼ N (0, σ2d11): random deviation



Linear Growth Curve Model

Complete model:

yij = ai0 + ai1tij + εij

ai0 = β0 + bi0

ai1 = β1 + β2Ci + bi1

I Distributions: (
bi0
bi1

)
∼ N

(
0, σ2

[
d00 d01
d01 d11

])
, εij ∼ (0, σ2)

I Independence:
I Persons are independent.
I Noises at different times are independent.
I Noise and random effect are independent.



Linear Growth Curve Model

Vectorized version:

yi = ai01+ ai1ti + εi(
ai0
ai1

)
=

[
1 0 0
0 1 Ci

]
β + bi

I εi ∼ N (0, σ2I)

I bi ∼ N (0, σ2D)



Linear Growth Curve Model

Linear Growth Curve (LGC) Model

yi = Ziai + εi

ai = Aiβ + bi

I εi ∼ N (0, σ2I)

I bi ∼ N (0, σ2D)

Is a LGC model a LME model?



Linear Growth Curve Model

A LGC model is a LME model:

yi = ZiAiβ +Zibi + εi

I Design matrix for fixed effects: Xi = ZiAi

I Fixed effect coefficients: β

I Design matrix for random effects: Zi

I Random effect coefficients: bi



Linear Growth Curve Model — Special Cases

I When ZI = I, LGC is a random-coefficient model

I Y =XBZ + ε is another LGC model.

I Growth curve models are sometimes called “latent growth curve” models.

I Growth curve models are related to structure equation modeling (SEM) in
econometrics.



Linear Growth Curve Model — Practice

I Fama-French Three-Factor Model:

ri = Rf + βi(Rm −Rf ) + bi1SMB+ bi2HML+ εi

I ri: return of stock i .
I Rf : risk-free rate
I Rm: market return
I SMB: Small minus big in capitalization
I HML: High minus low in book-to-market ratio

Extend it to a LGC model!



LGC Model — Known matrix D

If D is known or estimated, we have

β̂GLS =

(
N∑
i=1

AT
i Z

T
i V

−1
i ZiAi

)−1( N∑
i=1

AT
i Z

T
i V

−1
i yi

)

with covariance

Cov(β̂GLS) = σ2

(
N∑
i=1

AT
i Z

T
i V

−1
i ZiAi

)−1



LGC Model — Known matrix D

Let Wi =D + (ZT
i Zi)

−1, we have

ZT
i V

−1
i Zi = Z

T
i (I −Zi(D

−1 +ZT
i Zi)

−1ZT
i )Zi

= ZT
i Zi −ZT

i Zi(D
−1 +ZT

i Zi)
−1ZT

i Zi

= ZT
i Zi(D

−1 +ZT
i Zi)

−1D−1

= ZT
i Zi(I +Z

T
i ZiD)−1

=
(
(ZT

i Zi)
−1 +D

)−1
=W−1

i

and similarly, ZT
i V

−1
i yi =W

−1
i a0i with a0i = (ZT

i Zi)
−1ZT

i y.
Then

β̂GLS =

(
N∑
i=1

AT
i W

−1
i Ai

)−1( N∑
i=1

AT
i W

−1
i a0i

)
Cov(β̂GLS) = σ2

(
N∑
i=1

AT
i W

−1
i Ai

)−1



LGC Model — Known matrix D

Recall the LGC Model:

yi = Ziai + εi

ai = Aiβ + bi

We defined a0i = (ZT
i Zi)

−1ZT
i y — the OLS solution for the first equation!!

β̂GLS formula is the GLS solution for the second equation with covariance Wi!!
To see it:

a0i = (ZT
i Zi)

−1ZT
i y = ai + (ZT

i Zi)
−1ZT

i εi

and
Cov(a0i ) = σ2(D + (ZT

i Zi)
−1) = σ2Wi



LGC Model — Known matrix D

yi = Ziai + εi

ai = Aiβ + bi

Two-step estimation procedure:

I Estimate a0i for each i using OLS for the first equation.

I Estimate β using GLS for the second equation with covariance Wi.



LGC Model — MLE

The MLE maximizes

`(β, σ2,D) = −1

2

{
NT log σ2+

N∑
i=1

log |Vi|+σ−2
N∑
i=1

(yi−ZiAiβ)
TV −1i (yi−ZiAiβ)

}

or using the previous trick:

`(β, σ2,D) = −1

2

{
NT log σ2 +

N∑
i=1

log |Wi|

+ σ−2

[
S0 +

N∑
i=1

(a0i −Aiβ)
TW−1

i (a0i −Aiβ)

]}

where S0 =
∑N

i=1 ‖yi −Zia
0
i ‖2.



LGC Model — MLE

If we profile out σ2 with

σ̂2 =
1

NT

N∑
i=1

(a0i −Aiβ)
TW−1

i (a0i −Aiβ)

we have

`p(β,D) = −1

2

{
N∑
i=1

log |Wi|+NT log

[
S0 +

N∑
i=1

(a0i −Aiβ)
TW−1

i (a0i −Aiβ)

]}



LGC Model — MLE

Two-step procedure without knowing D:

I Fit the first equation with OLS to get a0i for all i.

I Maximize `p(β,D) with given a0i ’s.



LGC Model — MLE

Is β̂GLS unbiased?

β̂GLS =

(
N∑
i=1

AT
i Ŵ

−1
i Ai

)−1( N∑
i=1

AT
i Ŵ

−1
i a0i

)

I True, because D̂ is an even function of bi’s.



LGC Model — MLE

Is β̂GLS unbiased?

β̂GLS =

(
N∑
i=1

AT
i Ŵ

−1
i Ai

)−1( N∑
i=1

AT
i Ŵ

−1
i a0i

)

I True, because D̂ is an even function of bi’s.



LGC Model — MLE

CLT for MLE: √
N(β̂ − β) D−→ N (0, σ2H),

where H = limN→∞N
−1
(∑N

i=1A
T
i W

−1
i Ai

)−1
. (Deterministic Scheme)



LGC Model — MLE

Sketch of proof for CLT:

Theorem (Slutsky Theorem)

Let {gn(θ), n = 1, 2, . . . } be a sequence of uniformly differentiable functions on Rk

with limn→∞ gn = g. If θn
P−→ θ in Rk, then gn(θn)

P−→ g(θ).

I With Slutsky Theorem, we can show β̂(D̂)
P−→ β̂(D) for D̂

P−→D.

I On the other hand, we can show

√
N(β̂(D)− β) D−→ N (0, σ2H)

I The CLT is approved.


