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Identifiability

I Statistical model: a family of distributions for y parametrized by the vector θ
{Pθ,θ ∈ Θ}.

I The model is identifiable if

Pθ1 = Pθ2 −→ θ1 = θ2

I or, equivalently, if
θ1 6= θ2 −→ Pθ1 6= Pθ2



Identifiability — Example

I Consider a linear regression model:

y = Xβ + ε

I Is the above model Identifiable?

I (counter-)example for Identifiability:

p(y | β1, σ
2
1) = p(y | β2, σ

2
2) −→ β1 = β2 and σ21 = σ22

=⇒Xβ1 = Xβ2 and σ21 = σ22 −→ β1 = β2 and σ21 = σ22

=⇒X(β1 − β2) = 0 −→ β1 = β2

The last implication requires that X is of full (column) rank.

I The linear regression model is identifiable when X is of full rank.
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Identifiability — Example

I Consider the following model of Y : (low-rank approximation of matrix)

Y = uvT + σ2E,

where uvT is an unknown rank-one signal part and E is a noise matrix with IID
standard Gaussian entries.

I Is the above model identifiable?

I (counter-)examples:
I u→ −u and v → −v.
I u→ cu and v → c−1v for any c 6= 0.

I Identifiability Conditions (conditions that make the model identifiable)
I (reparametrization) Y = λuvT + σ2E
I (normalization) ‖u‖ = ‖v‖ = 1 and λ > 0.
I (sign fixing) The first non-zero element in u is positive.
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Identifiability — sufficient and necessary conditions

For regression models with normal distribution, a sufficient and necessary condition for
Identifiability is

Eθ1(y) = Eθ2(y) and Covθ1(y) = Covθ2(y) −→ θ1 = θ2

I Let a regression model be defined as

y ∼ N (f(β),V (β,θ)).

I Identifiability condition:

f(β1) = f(β2) and V (β1,θ1) = V (β2,θ2) −→ β1 = β2,θ1 = θ2.



Identifiability Conditions for LME

Theorem
If matrix X has full rank, at least one matrix Zi has full rank, and

∑N
i=1(ni − k) > 0,

the LME model is identifiable.

I X = [XT
1 ,X

T
2 , · · · ,XT

N ]T

I k is the number of random effects.

I ni is the sample size for group i.



Identifiability Conditions for LME — Proof

Recall the model:
y = N (Xβ, σ2diag(V1, · · · ,VN )),

where Vi = Ini +ZiDZ
T
i .

(1) Identifiability for β
When X has full rank, Xβ1 = Xβ2 implies X(β1 − β2) = 0, which gives β1 = β2.

(2) Identifiability for D and σ2

Need to show that when at least one matrix Zi has full rank, and
∑

(ni − k) > 0, we
have

σ21(Ini +ZiD1Z
T
i ) = σ22(Ini +ZiD2Z

T
i ) ∀i = 1, . . . , N −→ σ21 = σ22, D1 = D2.



Identifiability Conditions for LME — Proof

(2) Identifiability for D and σ2

Let δ = σ21 − σ22 and ∆ = σ21D1 − σ22D2. So we have

δIni +Zi∆Z
T
i = 0 ∀i. (1)

Without loss of generality, assume Z1 has full rank. Then

δIn1 +Z1∆Z
T
1 = 0 =⇒ δ(ZT

1 Z)−1 + ∆ = 0 (2)

Therefore, by substitute ∆ in (1), we have

δIni − δZi(ZT
1 Z1)

−1ZT
i = 0 ∀i (3)



Identifiability Conditions for LME — Proof

Because
∑

(ni − k) > 0, there exists l such that nl − k > 0. Then from (3), we know

δInl
− δZl(ZT

1 Z1)
−1ZT

l = 0

Notice that
rank(Zl(Z

T
1 Z1)

−1ZT
l ) ≤ rank(Zl) ≤ k < nl.

Hence, Inl
−Zl(ZT

1 Z1)
−1ZT

l 6= 0. Then we must have δ = 0. Furthermore, from (2),
we know ∆ = 0. δ = 0 and ∆ = 0 imply σ21 = σ22 and D1 = D2.

Remark: the textbook proves the theorem using the positive definiteness of the
information matrix, which overkills the problem.



Identifiability is not the validity of a model

Consider a random-coefficient model:

y = Xb+ ε,

where b ∼ N (β, σ2D) and ε ∼ N (0, σ2I).
We can write

y = Xβ +Xδ + ε,

where δ ∼ N (0, σ2D).
Or, equivalently,

y ∼ N (Xβ, σ2(I +XDXT )).

Is this a mixed-effect model? Is this a balanced random coefficient model?



Identifiability is not the validity of a model

The complete profiled log-likelihood function of D is (verify!)

`p(D) = −1

2
log |I +XDXT |+ C

This leads to the trivial solution
D̂ = 0.

I The data is not large enough to identify the “randomness” of b.

I We cannot seperate the noise δ from the mean β when having only one group.

I The solution is not trivial if we have more than 1 group.



Information Matrix

Log-likelihood for group i:

`i = −1

2

{
n log σ2 + σ−2(y −Xβ)TV −1i (y −Xβ) + log |Vi|

}
Derivatives:

∂`i
∂σ2

= − n

2σ2
+
σ−2(y −Xβ)TV −1i (y −Xβ)

2σ2
∼ − n

2σ2
+

1

2σ2
χ2
n

and

Var

(
∂`1
∂σ2

)
=

n

2σ4



Information Matrix
Log-likelihood for group i:

`i = −1

2

{
n log σ2 + σ−2(y −Xβ)TV −1i (y −Xβ) + log |Vi|

}
Derivatives:

∂`i
∂β

= σ−2XTV −1i (y −Xβ)

and ∂`i
∂β is uncorrelated with ∂`i

∂σ2 and ∂`i
∂D (check textbook). Therefore,

cov
(
β̂
)

= σ̂2

(
N∑
i=1

XT
i (I +ZiD̂Z

T
i )−1Xi

)−1

I
∑N

i=1 because we consider N clusters.

I ()−1 because the information matrix is block diagonal.

I It is the asymptotic variance — we used the information matrix.



Information Matrix

Some useful facts (under certain regulation conditions):

I E[∂`/∂θ] = 0.

I I(θ) = E[∂2`/∂θ2].

I [I(θ)]ij = E[∂2`/(∂θi∂θj)] = E[(∂`/∂θi)(∂`/∂θj)] = Cov[(∂`/∂θi), (∂`/∂θj)]

I Cov(θ̂) = I−1



Wald Confidence Interval

Let sj be the variance of β̂j , that is [cov(β̂)]jj . Asymptotically, we have

β̂j
sj
∼ N (0, 1).

Or finitely, we have
β̂j
sj
∼ tNT−m,

where m is the number of fixed effects.

Warning: β̂j/sj is NOT t-distributed. Why?

D is estiamted.
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Profile-likelihood Confidence Interval
Assume the parameter has two parts θ = (θ0,θ1).
Consider the hypothesis testing:

H0 : θ0 = θ∗ Ha : θ0 6= 0

Likelihood ratio test:

LR =
maxθ0,θ1 L(θ0,θ1)

maxθ1 L(θ∗,θ1)

Distribution:
2 logLR ∼ χ2

dim(θ0)

Reject when:

max
θ0,θ1

`(θ0,θ1)−max
θ1

`(θ∗,θ1) >
1

2
χ2
1−α,dim(θ0)

For what values of θ∗, we cannot rejct?

{θ∗ : max
θ1

`(θ∗,θ1) ≥ max
θ0,θ1

`(θ0,θ1)−
1

2
χ2
1−α,dim(θ0)

}
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Profile-likelihood Confidence Interval

Profile-likelihood Confidence Interval for θ0 (one of the parameters):

{θ : max
θ1

`(θ,θ1) ≥ max
θ0,θ1

`(θ0,θ1)−
1

2
χ2
1−α,1}

Or θL < θR are solutions to

max
θ1

`(x,θ1) = max
θ0,θ1

`(θ0,θ1)−
1

2
Z2
1−α/2,

where Z1−α/2 is the (1− α/2)-quantile of a standard normal distribution. The PL
confidence interval is (θL, θR). Version adjusted for d.f. θL < θR are solutions to

max
θ1

`(x,θ1) = max
θ0,θ1

`(θ0,θ1)−
1

2
t21−α/2,n−m,

where t21−α/2,n−m is the (1− α/2)-quantile of a t-distribution with d.f. (n−m).



Profile-likelihood Confidence Interval for LME

I Let β−j be the fixed effect coefficient vector except the j-th one.

I PL CI:

max
β−j ,D,σ2

`(βj ,β−j ,D, σ
2) = max

β,D,σ2
`(β,D, σ2)− 1

2
Z2
1−α/2

I How to calculate maxβ,D,σ2 `(β,D, σ2)?

MLE.

I How to get maxβ−j ,D,σ2 `(βj ,β−j ,D, σ
2)? MLE for the following LME model:

ỹi = X̃iβ−j +Zib+ εi

I ỹi = yi − βjxj

I X̃: removing j-th column from Xi.
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F-test for D

Consider the test:
D = 0

Possible test?

I likelihood ratio test? No. The limit distribution of LR is not χ2 because D = 0 is
on the boundary of the parameter space.

I sum of squares? Yes. F-test.



F-test for D
I Without random effect terms:

SOLS =

N∑
i=1

∥∥∥yi −Xiβ̂OLS

∥∥∥2 = min
β
‖y −Xβ‖2

I With random effect terms:

Smin = min
γ
‖y −Wγ‖2,

where y = (yT1 , . . . ,y
T
N )T , γ = (βT , bT1 , . . . , b

T
N )T , and

W =


X1 Z1 0 · · · 0
X2 0 Z2 · · · 0

...
...

...

XN 0 0
... ZN





F-test for D

Theorem
Let r = rank(W ). When D = 0, we have

(SOLS − Smin)/(r −m)

Smin/(NT − r)
∼ F (r −m,NT − r).

Proof: Because X is a submatrix of W . The test is the same as testing

H0 : b1 = · · · = bN = 0



F-test for D — Special Case

VARCOMP model:

yij = β + bi + εij , j = 1, . . . , ni, i = 1, . . . , N,

where εij ∼ N (0, σ2) and bi ∼ N (0, σ2d).
The F-test: ∑

ni(ȳi −
∑

j nj ȳj/NT )2/(N − 1)(∑
ij y

2
ij −

∑
i niȳ

2
i

)
/(NT −N)

∼ F (N − 1, NT −N)

I numerator: between-group variation

I denominator: within-group variation



Finite Sample Properties for MLE

Is β̂ unbiased?
Recall:

β̂ =

(
N∑
i=1

XT
i V̂

−1
i Xi

)−1( N∑
i=1

XT
i V̂

−1
i yi

)
,

where V̂i = I +ZiD̂Z
T
i is the estimated covariance matrix for group i.

I all randomness come from ηi for i = 1, . . . , N . (yi = Xiβ + ηi)

I ηi is symmetric around 0: p(ηi) = p(−ηi).

I D̂ is an even function of η1, . . . ,ηN : D̂(η1, . . . ,ηN ) = D̂(−η1, . . . ,−ηN ).
Why? The profiled LLH of D is an even function of D.

I Therefore, the distribution of β̂ is symmetric at β.
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Finite Sample Properties for MLE

A quick proof: (let η = (ηT1 , . . . ,η
T
N )T )

E[β̂] =

∫
β̂(η)p(η)dη =

∫
β̂(η)

p(η) + p(−η)

2
dη

=
1

2

∫
β̂(η)p(η)dη − 1

2

∫
β̂(−η)p(η)dη =

∫
β̂(η) + β̂(−η)

2
p(η)dη.

Because we have

β̂(η) + β̂(−η) =

(
N∑
i=1

XT
i V̂

−1
i (η)Xi

)−1( N∑
i=1

XT
i V̂

−1
i (η)(Xiβ + η)

)

−

(
N∑
i=1

XT
i V̂

−1
i (−η)Xi

)−1( N∑
i=1

XT
i V̂

−1
i (−η)(Xiβ − η)

)
= 2β,

β̂ is unbiased.



Finite Sample Properties for MLE

Are the following variance estimators unbiased?

I σ̂2ML

I D̂ML

I σ̂2MLD̂ML

I σ̂2REML

I D̂REML

I σ̂2REMLD̂REML



Finite Sample Properties for MLE

Are the following variance estimators unbiased?

I σ̂2ML biased

I D̂ML biased

I σ̂2MLD̂ML biased

I σ̂2REML unbiased

I D̂REML unbiased

I σ̂2REMLD̂REML N/A



Finite Sample Properties for MLE

A special case:

I σ̂2ML and σ̂2MLD̂REML are unbiased for the balanced random-coefficient models.

I Recall:

σ̂2ML = σ̂2RML =
1

N(n−m)

N∑
i=1

yTi (I −Z(ZTZ)−1ZT )yi

D̂RML =
1

(N − 1)σ̂2ML

(ZTZ)−1ZT ÊÊTZ(ZTZ)−1 − (ZTZ)−1



Finite Sample Properties for MLE

I σ̂2ML and σ̂2MLD̂REML are unbiased for the balanced random-coefficient models.

Proof:

E[σ̂2ML] =
1

N(n−m)

N∑
i=1

E[eTi (I −Z(ZTZ)−1ZT )ei] = σ2

E[σ̂2MLD̂REML] =
1

N − 1
(ZTZ)−1ZTE[ÊÊT ]Z(ZTZ)−1 − σ2(ZTZ)−1

= σ2D



Large Sample Properties — Deterministic v.s. Stochastic Schemes

Example: (linear regression model)

yi = βTxi + εi.

and

β̂n =

(
n∑
i=1

xix
T
i

)−1( n∑
i=1

xTi yi

)



Large Sample Properties — Deterministic v.s. Stochastic Schemes

β̂n =

(
n∑
i=1

xix
T
i

)−1( n∑
i=1

xTi yi

)
Deterministic Scheme:
If

sup ‖xi‖ ≤ B and lim
n→∞

n−1
n∑
i=1

xix
T
i = A

then,

β̂n
P−→ β

√
n(β̂ − β)

D−→ N (0, σ2A−1)



Large Sample Properties — Deterministic v.s. Stochastic Schemes

β̂n =

(
n∑
i=1

xix
T
i

)−1( n∑
i=1

xTi yi

)
Stochastic Scheme:
If xi’s are i.i.d. with mean µx and covariance Vx, then,

β̂n
P−→ β

√
n(β̂ − β)

D−→ N (0, σ2V −1x )



Large Sample Properties — LME in Stochastic Schemes

We assume groups (Xi,Zi, ni) ∼ f(· | ξ) are i.i.d distributed. The full model:

yi ∼ N (Xiβ, σ
2(I +ZiDZ

T
i )), (Xi,Zi, ni) ∼ f(· | ξ)

The full log-likelihood:

`(β, σ2,D) +

N∑
i=1

log f(Xi,Zi, ni | ξ)

Then we have

√
N( ˆβ − β))

D−→ N

0, σ2

 ∞∑
j=1

pjE[Z1Z
T
1 | n1 = j]

−1 + σ2D





Large Sample Properties — LME in Stochastic Schemes

What if infi ni →∞ but N constant?

I ni →∞: we have all possible observations for group i (with bi)

I Same to the previous argument: we have near-noiseless observations for group i

I A finite number of bi’s do not guarantee consistency in estimating D.

I Condition: Not consistent for D.
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Large Sample Properties — Equivalence of ML and REML

I The log-likelihood functions for ML and REML differ by

log

∣∣∣∣∣
N∑
i=1

XT
i (I +ZiDZ

T
i )−1Xi

∣∣∣∣∣
I The term is op(N) whereas other terms in log-likelihood functions are Op(N).

I The difference in log-likelihood functions vanishes when N →∞.



Large Sample Properties — Equivalence of ML and REML

I Need to show

lim
N→∞

1

N

∂

∂D
log

∣∣∣∣∣
N∑
i=1

XT
i (I +ZiDZ

T
i )−1Xi

∣∣∣∣∣ = 0



Estimation of Random Effects

Now assume we already have the values for β, σ2 and D (or estimates of them)

How to estimate the random effect coefficients for each group?
i.e. get b̂1, . . . , b̂N given β, σ2, D.



Estimation of Random Effects — Bayesian Approach

From Bayesian perspective,

I Prior: bi ∼ N (0, σ2D).

I Likelihood: (yi −Xiβ) | bi ∼ N (Zibi, σ
2I).

I Posterior: (let η = yi −Xiβ)

p(bi | η) ∝ exp

{
− 1

2σ2
‖η −Zibi‖2

}
exp

{
− 1

2σ2
bTi D

−1bi

}
∝ exp

{
− 1

2σ2
[
bTi (ZT

i Zi +D−1)bi − 2ηTZibi
]}

∼ N ((ZT
i Zi +D−1)−1ZT

i η, σ
2(ZT

i Zi +D−1)−1)

I The estimate is
b̂i = (ZT

i Zi +D−1)−1ZT
i (yi −Xiβ)



Estimation of Random Effects — Simultaneous Estimation

The fixed effect coefficients and the random effect coefficients can be estimated
simultaneously through

min
β,b1,...,bN

N∑
i=1

[
‖yi −Xiβ −Zibi‖2 + bTi D

−1bi
]

I Optimization with respect to b1, . . . , bN is the same as in Bayesian approach.

I Plug in the solution for b1, . . . , bN , and we have an optimization problem for β.



Estimation of Random Effects — Simultaneous Estimation

Let bi = (ZT
i Zi +D−1)−1ZT

i η, we have the objective function is

obj.fun. =

N∑
i=1

[
‖
[
I −Zi(ZT

i Zi +D−1)−1ZT
i

]
η‖2

+ ηTZi(Z
T
i Zi +D−1)−1D−1(ZT

i Zi +D−1)−1ZT
i η

]
Notice that (D−1 +ZT

i Zi)
−1 = D −DZT

i (I +ZiDZ
T
i )−1ZiD.

obj.fun. =

N∑
i=1

[
‖V −1i η‖2 + ηV −1i ZiDZ

T
i V

−1
i η

]
=

N∑
i=1

ηTV −1i η

Same as in the GLS.



Estimation of Random Effects — BLUE

For simplicity, we consider the following model with one group.

y = Xβ +Zb+ ε.

Consider linear estimators for b, that is, b̂ = Cy.

I Expectation: E[Cy] = CXβ.

I MSE: Var(Cy − b) = CCT + (I −CZ)D(I −CZ)T

I BLUE: for any p,

min
C

pT [CCT + (I −CZ)D(I −CZ)T ]p s.t. CX = 0

I The solution is the same as the Bayesian approach.



Hypothesis Testing on Fixed Effects

Consider a generalized linear regression model:

y = Xβ + η, η ∼ N (0, σ2V )

Test
H0 : Cβ = 0 v.s. Ha : Cβ 6= 0

Construct RSS and RSS0 as

RSS = (y −Xβ̂)TV −1(y −Xβ̂) RSS0 = (y −Xβ̂0)
TV −1(y −Xβ̂0),

where β̂ is GLS without constraint and β̂0 is GLS under null.



Hypothesis Testing on Fixed Effects

Construct F-test:
(RSS0 − RSS)/q

RSS/(n−m)
∼ Fq,n−m,

where n is the number of observations, m is the number of covariates, and q is the
number of constraints in H0.
Why?

I RSS ∼ χ2
n−m

I RSS0 ∼ χ2
n−m+q

I The space for y −Xβ̂ is a subspace of that for y −Xβ̂0.
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Programming — Test significance of fixed effect

1 library(nlme)

2 fit.lme = lme(fixed=Weight~Height+Sex , random=~1|FamilyID , data=data)

3 summary(fit.lme)

Fixed effects: Weight ~ Height + Sex

Value Std.Error DF t-value p-value

(Intercept) -54.83871 80.15014 51 -0.6841998 0.4969

Height 2.93276 1.22667 51 2.3908287 0.0205

Sex 24.16578 9.82833 51 2.4587871 0.0174



Programming — Get the estimated coefficients
1 fit.lme = lme(fixed=Weight~Height , random=~1|FamilyID , data=data)

2 coef(fit.lme)

(Intercept) Height

1 -185.7838 5.345309

2 -209.4829 5.345309

3 -195.4609 5.345309

4 -226.7483 5.345309

5 -216.9965 5.345309

6 -204.6060 5.345309

7 -211.9348 5.345309

8 -215.6025 5.345309

9 -203.5639 5.345309

10 -212.1451 5.345309

11 -208.4306 5.345309

12 -203.9077 5.345309

13 -214.8966 5.345309



Programming — Get the estimated coefficients
1 fit.lme = lmer(Weight~Height +(1| FamilyID), data=data)

2 coef(fit.lme)$FamilyID

(Intercept) Height

1 -185.7838 5.345309

2 -209.4829 5.345309

3 -195.4609 5.345309

4 -226.7483 5.345309

5 -216.9965 5.345309

6 -204.6060 5.345309

7 -211.9348 5.345309

8 -215.6025 5.345309

9 -203.5639 5.345309

10 -212.1451 5.345309

11 -208.4306 5.345309

12 -203.9077 5.345309

13 -214.8966 5.345309



Programming — Test random effects

1 Z = as.matrix(bdiag(split(rep(1, dim(data)[1]), data$FamilyID)))
2

3 fit0 = lm(data$Weight ~ data$Height)
4 fit1 = lm(data$Weight ~ 0 + data$Height + Z)

5 anova(fit0 , fit1)

Analysis of Variance Table

Model 1: data$Weight ~ data$Height

Model 2: data$Weight ~ 0 + data$Height + Z

Res.Df RSS Df Sum of Sq F Pr(>F)

1 69 55856

2 52 32122 17 23734 2.26 0.01261 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


