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|dentifiability

> Statistical model: a family of distributions for y parametrized by the vector
{Pg, NS @}
» The model is identifiable if

Pgl = P92 — 91 = 92

» or, equivalently, if
01 75 92 — P91 75 P92



|dentifiability — Example

» Consider a linear regression model:
y=XB+e

» Is the above model Identifiable?



|dentifiability — Example

» Consider a linear regression model:
y=XB+e
» s the above model Identifiable?

» (counter-)example for Identifiability:

p(y | B1.0%) =p(y | B2,03) — B1 = B2 and o} = 03

—=Xp1 = X ando%:o%—>,61:ﬁ2 anda%:gg
:>X(131_/32):0—>ﬂ1:/32

The last implication requires that X is of full (column) rank.

» The linear regression model is identifiable when X is of full rank.



|dentifiability — Example

» Consider the following model of Y: (low-rank approximation of matrix)

Y = uwv! + o%E,

where uv” is an unknown rank-one signal part and E is a noise matrix with IID

standard Gaussian entries.

» Is the above model identifiable?



|dentifiability — Example

» Consider the following model of Y: (low-rank approximation of matrix)

Y = uwv! + o%E,

where uv” is an unknown rank-one signal part and E is a noise matrix with IID

standard Gaussian entries.
» [s the above model identifiable?

» (counter-)examples:

> u — —uand v = —v.
> u — cu and v — ¢ v for any ¢ # 0.
» Identifiability Conditions (conditions that make the model identifiable)
> (reparametrization) Y = Auv? + o’E
> (normalization) |lu|| = |lv|| =1 and A > 0.
> (sign fixing) The first non-zero element in w is positive.



|dentifiability — sufficient and necessary conditions

For regression models with normal distribution, a sufficient and necessary condition for
Identifiability is

Eg, (y) = Eg,(y) and Covg, (y) = Covg,(y) — 61 = 0

P> Let a regression model be defined as

y~N(f(8),V(8,9)).

> Identifiability condition:

F(B1) = f(B2) and V(B1,0:1) = V(B2,02) — B1 = B2,01 = 02.



|dentifiability Conditions for LME

Theorem
If matrix X has full rank, at least one matrix Z; has full rank, and Zf\;l(nl —k) >0,
the LME model is identifiable.

> X = [XlTvX2T7 7X]€]T
» k is the number of random effects.

» n; is the sample size for group 1.



|dentifiability Conditions for LME — Proof

Recall the model:
Yy = N(XIBJ O-Zdia‘g(‘/la T 7VN))7

where V; = I,,, + Z,DZ] .
(1) Identifiability for 3
When X has full rank, X 31 = X 32 implies X (31 — 32) = 0, which gives 81 = B3s.

(2) Identifiability for D and o2
Need to show that when at least one matrix Z; has full rank, and > (n; — k) > 0, we
have

oi(I,, + Z;D\Z]) = o3(I,, + Z; D>y Z})Yi=1,...,N — ¢? =03, D, = D.



|dentifiability Conditions for LME — Proof

(2) Identifiability for D and o2
Let § = 0% - 0% and A = O'%Dl - ang. So we have

6T, + Z;AZ] =0 Vi.
Without loss of generality, assume Z; has full rank. Then
oI, +Z:AZT =0 — 6(ZTz)'+A=0
Therefore, by substitute A in (1), we have

oI, —0Z;2ZY 7))z =0 Vi



|dentifiability Conditions for LME — Proof

Because ) (n; — k) > 0, there exists [ such that n; — k > 0. Then from (3), we know
oI, —0Z(Z]Z,\) 'zl =0

Notice that
rank(Z(Z1 Z,) ' Z]') < rank(Z)) < k < n,.

Hence, I, — Zl(Zszl)*lZlT # 0. Then we must have § = 0. Furthermore, from (2),
we know A =0. § =0 and A =0 imply 0} = 03 and Dy = Ds.

Remark: the textbook proves the theorem using the positive definiteness of the
information matrix, which overkills the problem.



|dentifiability is not the validity of a model

Consider a random-coefficient model:
y=Xb+e,

where b ~ N (B,02D) and € ~ N(0,02I).
We can write
y=XpB+ Xd+e,
where & ~ N(0,0%D).
Or, equivalently,
y~N(XB,0%(I + XDXT)).

Is this a mixed-effect model? Is this a balanced random coefficient model?



|dentifiability is not the validity of a model

The complete profiled log-likelihood function of D is (verify!)
1
(p(D) = — log [T + XDXT|+C

This leads to the trivial solution
D =0.

» The data is not large enough to identify the “randomness” of b.
» We cannot seperate the noise § from the mean 3 when having only one group.

» The solution is not trivial if we have more than 1 group.



Information Matrix

Log-likelihood for group ¢:

1
ti=—5 {nlogo” + o 7(y - XB)'V, "\ (y - XB) + log |Vi}

Derivatives:
U n  oy-XP)V y-XB) n 1,
do2 202 202 202 202Xn
and

851 o n
Var <aoz> = 90t



Information Matrix
Log-likelihood for group i:

0 = _% {nloga® +o07(y — XB)"V, ! (y — XB) +log |V;|}
Derivatives: o¢; et
23 =0 "XV, (y—-Xp)
and g% is uncorrelated with 2% and 9% (check textbook). Therefore,

i=1

N -1
cov (,3) =62 (Z XiT(I + ZiEZZ-T)_lXi>

> Efil because we consider IV clusters.
» ()~! because the information matrix is block diagonal.

» [t is the asymptotic variance — we used the information matrix.



Information Matrix

Some useful facts (under certain regulation conditions):
» E[0¢/006] = 0.
> I(0) =E[0%(/067].
> [1(9)];; = E[0%¢/(96:06;)] = E[(06/96,)(D¢/8,)] = Cov[(9L/98,), (9¢/06;)]
> Cov(f) =TI""



Wald Confidence Interval

Let s; be the variance of Bj, that is [COV(B)]]-J-. Asymptotically, we have

Bi N (0,1),
Sj

Or finitely, we have A
Bi
o tN—ms
Sj Nz

where m is the number of fixed effects.

Warning: Bj/sj is NOT t-distributed. Why?



Wald Confidence Interval

Let s; be the variance of Bj, that is [COV(B)]]-J-. Asymptotically, we have

Bi N (0,1),
Sj

Or finitely, we have A
Bi
o tN—ms
Sj Nz

where m is the number of fixed effects.

Warning: (3;/s; is NOT t-distributed. Why? D is estiamted.



Profile-likelihood Confidence Interval

Assume the parameter has two parts 8 = (6, 61).
Consider the hypothesis testing:

H0:00:0* Ha:OO#O

Likelihood ratio test:
maxg, 9, L(6o,601)

LR —
R maxg, L(60*,6;)

Distribution:
2 log LR ~ X(211m(00)
Reject when:

* 1 2
max (60, 61) — max £(67, 61) > X1 _qdim(8)

For what values of 6%, we cannot rejct?



Profile-likelihood Confidence Interval

Assume the parameter has two parts 8 = (6, 61).
Consider the hypothesis testing:

H0:00:0* Ha:OO#O

Likelihood ratio test:
maxg, 9, L(6o,601)

LR —
R maxg, L(60*,6;)

Distribution:
2 log LR ~ X(211m(00)
Reject when:

* 1 2
max (60, 61) — max £(67, 61) > X1 _qdim(8)

For what values of 6%, we cannot rejct?

* % 1
{67 : I%?Xfw ,01) > g%%fg(@o,@l) - QX%—a,dim(Go)}



Profile-likelihood Confidence Interval

Profile-likelihood Confidence Interval for 6 (one of the parameters):

I
: > -5
{6 n})zlixﬁ(e, 0,) > lgol%)liﬁ(eoa 0:) 2X17a,1}

Or 61, < OR are solutions to

max {(x,01) = max {(6p, 01) — }Z%fa/w
0, 2

00,01
where Z;_, /5 is the (1 — a/2)-quantile of a standard normal distribution. The PL
confidence interval is (01, 6r). Version adjusted for d.f. 6, < O are solutions to

1
Hbaxﬁ(x,@l) = max/(6y, 0,) — ~t>
1

0.01 9 1-a/2,n—m>

2
where tlfa/lnfm

is the (1 — ar/2)-quantile of a t-distribution with d.f. (n —m).



Profile-likelihood Confidence Interval for LME

» Let B_; be the fixed effect coefficient vector except the j-th one.

> PL Cl: 1
. . 2\ _ 2\ _ ~ 72
max 2£(ﬁ37/8—37D70- )_,BI,nDaifzg(IB,D7o- ) 221704/2

—3> Nea

» How to calculate maxg p ,2 £(83, D,o%)?



Profile-likelihood Confidence Interval for LME

» Let B_; be the fixed effect coefficient vector except the j-th one.

> PL Cl:

1
o 1, {85 Biy D, 0%) = e, UB, D, %) = 521_as

> How to calculate maxg p 2 (3, D,0%)? MLE.
> How to get maxg . p 2 £(8;, 8-, D,o?%)?



Profile-likelihood Confidence Interval for LME

» Let B_; be the fixed effect coefficient vector except the j-th one.

> PL Cl:

1
o 1, {85 Biy D, 0%) = e, UB, D, %) = 521_as

> How to calculate maxg p 2 (3, D,0%)? MLE.
> How to get maxg_; p 2 ¢(B;,B-j,D,a*)? MLE for the following LME model:

9i= XiB_j+ Zib+ ¢

> Y=y~ Bjxd
» X: removing j-th column from X;.



F-test for D

Consider the test:
D=0
Possible test?

> likelihood ratio test? No. The limit distribution of LR is not x? because D = 0 is
on the boundary of the parameter space.

» sum of squares? Yes. F-test.



F-test for D

» Without random effect terms:

N
SoLs =Y ‘
=1

» With random effect terms:

~ 2
vi ~ Xifous|| = minly ~ X4

Sin = H}Yin ly — W’Y”2,

where y = (yi,...,y)T, v=(BT,bl,...,b%)7, and

X1 Z 0 - 0
Xy, 0 Zy --- 0

Xy O 0 AN



F-test for D

Theorem
Let r = rank(W'). When D = 0, we have

(SOLS - Smm)/(r — m)
szn/(NT - T)

~ F(r—m,Np—r).

Proof: Because X is a submatrix of W. The test is the same as testing

Hy:bj=--=by=0



F-test for D — Special Case

VARCOMP model:
yl]:/ﬁ—l_bl—'_el]v jzlv"')niu izl?""Nv

where ¢;; ~ N(0,02) and b; ~ N(0, 0%d).
The F-test:

> ni(gi — >, 159;/Nr)? /(N — 1)
(93 = Smi?) /(Nr — N)

~ F(N —1,Ny — N)

P> numerator: between-group variation

» denominator: within-group variation



Finite Sample Properties for MLE

Is B unbiased?

N -1 /N
. (z X;fvi—lxz-) (z Xm—lyi) |

i=1 =1

Recall:

where V; = T + ZiﬁZiT is the estimated covariance matrix for group <.



Finite Sample Properties for MLE

Is B unbiased?

N -1 /N
. (z X;fvi—lxz-) (z Xm—lyz-) |

i=1 =1

Recall:

where V; = T + ZiﬁZiT is the estimated covariance matrix for group <.

» all randomness come from n; fori =1,...,N. (y; = X;8 + n;)
» n; is symmetric around 0: p(n;) = p(—n;).

» D is an even function of 71, ..., mN: D(m,...,nn) = D(—m,...,—nn).
Why? The profiled LLH of D is an even function of D.

» Therefore, the distribution of ,3 is symmetric at 3.



Finite Sample Properties for MLE
A quick proof: (let n = (n¥,..., niHT)

B is unbiased.



Finite Sample Properties for MLE

Are the following variance estimators unbiased?

>

>
>
>
>
>

T
EML
5%, Dui
a-]2::’,E]\JL
EREML

~2 -
JRE]WLDREML



Finite Sample Properties for MLE

Are the following variance estimators unbiased?

>

>
>
>
>
>

A2 .

04,5, biased
D), biased

~9 ~ .

oy, Dy biased
/\2 -
0 Unbiased
DREML unbiased

&%EEMLEREML N/A



Finite Sample Properties for MLE

A special case:
> &12\4L and &%/ILDREML are unbiased for the balanced random-coefficient models.
» Recall:

N

. . 1 _

J12\/1L = U?%ML = 7]\](” “m) Z?JZT(I - Z(ZTZ) 1ZT)yz‘
i=1

Dgryr = 7A2(ZTZ)_1ZTEETZ(ZTZ)_1 o (ZTZ)—I



Finite Sample Properties for MLE

» 62, and 63,; Drpar, are unbiased for the balanced random-coefficient models.
Proof:

E[63,] = ZE (I-2(272)'27)e;] = o>

o A 1 B ) )
E[63 Dremr] = ﬁ(ZTZ) \ZTRIEET)Z(272)" — %27 Z)™!

= o’D



Large Sample Properties — Deterministic v.s. Stochastic Schemes

Example: (linear regression model)
yi =Bz + €.

and

n -1 n
b= (z ) (zmy)
=1 =1



Large Sample Properties — Deterministic v.s. Stochastic Schemes

n _1 n
4. (z ) (2”)
i=1 =1

Deterministic Scheme:
If
n
< : -1 Y A
sup ||&;|| < B and nh_)n(r)lon Zmlml A
i=1
then,



Large Sample Properties — Deterministic v.s. Stochastic Schemes

n -1 n
i=1 i=1

Stochastic Scheme:
If ;'s are i.i.d. with mean p, and covariance V,, then,

8. 5B
VaB - B8) 2 N(©0,0%V, )



Large Sample Properties — LME in Stochastic Schemes

We assume groups (X, Z;,n;) ~ f(-| &) are i.i.d distributed. The full model:
yi ~ N(XiB,o*(I + Z,DZ})), (Xi,Zi,ni) ~ f(- | €)
The full log-likelihood:
N
(8,0 D)+ log f(Xi, Zi,n; | €)
i=1
Then we have

-1
VN(B - B)) N (0702 (ijE[zlle | j]) +029)

J=1



Large Sample Properties — LME in Stochastic Schemes

What if inf; n; — oo but N constant?



Large Sample Properties — LME in Stochastic Schemes

What if inf; n; — oo but N constant?

» n; — oco: we have all possible observations for group i (with b;)

» Same to the previous argument: we have near-noiseless observations for group %
» A finite number of b;'s do not guarantee consistency in estimating D.

» Condition: Not consistent for D.



Large Sample Properties — Equivalence of ML and REML

» The log-likelihood functions for ML and REML differ by

N
log Z X'1+2zDz!)'X;
i=1

» The term is 0,(N) whereas other terms in log-likelihood functions are O, ().

» The difference in log-likelihood functions vanishes when N — co.



Large Sample Properties — Equivalence of ML and REML

> Need to show

N

1.9 T T\—1
NN oD 08 ;X (I+2zDZ)'X;| =0



Estimation of Random Effects

Now assume we already have the values for 3,02 and D (or estimates of them)

How to estimate the random effect coefficients for each group?
i.e. get by,...,by given B, 02, D.



Estimation of Random Effects — Bayesian Approach

From Bayesian perspective,
» Prior: b; ~ N(0,0°D).
» Likelihood: (y; — X;83) | b; ~ N(Z;b;,0°I).
» Posterior: (let n = y; — X;3)

1 2 1 T y—1
ot ) xexp { =5 I - 2 fexo { 0! Do

202
~N(z]zZ;+D YY'ZI'n,oc* 2] Z;+ D))

1
x exp { (6] (Z] Z; + D ")b; — 20" Z;b;] }

» The estimate is R
bi= (2 Zi+ D ") 'z (y; — X:B)



Estimation of Random Effects — Simultaneous Estimation

The fixed effect coefficients and the random effect coefficients can be estimated
simultaneously through

N
minb Z [Hy, — XiB— Z:bi|* + b?D*lbi]
,015--,0N 7
=1
» Optimization with respect to by, ..., by is the same as in Bayesian approach.

» Plug in the solution for by, ..., by, and we have an optimization problem for 3.



Estimation of Random Effects — Simultaneous Estimation

Let b; = (ZI' Z; + D=1)"1ZI'n, we have the objective function is

N
obj.fun. = 3" [n [I- 242 Zi+D ") Z] |

i=1

+ntzy(zrz,+ DY) 'DY(zl'z; + Dl)lz?n]

Notice that (D' + ZT'Z,)"' = D - DZ!(1+ Z,DZ})"'Z,D.

N N
obj.fun. = " [|V;'n|* + 0V, ' ZiDZ] V7 \q] =Y 0"V, '
i=1 =1

Same as in the GLS.



Estimation of Random Effects — BLUE

For simplicity, we consider the following model with one group.
y=XB+Zb+e.

Consider linear estimators for b, that is, b = Cy.
> Expectation: E[Cy] = CXp.
» MSE: Var(Cy —b) =CCT + (I -CZ)D(I - C2Z)"
» BLUE: for any p,

mci’n pllcCT+(I-CZ)DI-CZ)]p s5t.CX =0

» The solution is the same as the Bayesian approach.



Hypothesis Testing on Fixed Effects

Consider a generalized linear regression model:
y=XB+n, n~N(0V)

Test
Hy:CB=0 wv.s. H,:CB#0

Construct RSS and RSSy as
RSS = (y — XB)'V iy — XB) RSSy)=(y— XBo) 'Vl (y— Xp3),

where B is GLS without constraint and B is GLS under null.



Hypothesis Testing on Fixed Effects

Construct F-test:
(RSSp — RSS)/q

RSS/(n —m)
where n is the number of observations, m is the number of covariates, and ¢ is the

number of constraints in Hy.
Why?

~ Fq,n—m7



Hypothesis Testing on Fixed Effects

Construct F-test:
(RSSp — RSS)/q

RSS/(n —m)
where n is the number of observations, m is the number of covariates, and ¢ is the
number of constraints in Hy.

Why?
> RSS ~ X7
> RSSy ~ X%7m+q
» The space for y — XB is a subspace of that for y — X,éo.

~ Fq,n—m7



Programming — Test significance of fixed effect

1 library (nlme)
2 fit.1lme = lme(fixed=Weight “"Height+Sex, random="1|FamilyID, data=data)
3 summary (fit.lme)

Fixed effects: Weight ™ Height + Sex
Value Std.Error DF t-value p-value
(Intercept) -54.83871 80.15014 51 -0.6841998 0.4969
Height 2.93276  1.22667 51 2.3908287 0.0205
Sex 24.16578 9.82833 51 2.4587871 0.0174



Programming — Get the estimated coefficients

1 fit.1lme =

lme (fixed=Weight "Height,

2> coef (fit.1lme)

(Intercept)

© 00 N O O WN -

10

e
w N -

-185.
-209.
-195.
-226.
-216.
-204.
-211.
-215.
-203.
-212.
-208.
-203.
-214.

7838
4829
4609
7483
9965
6060
9348
6025
5639
1451
4306
9077
8966

g o1 oo oo oo oo OOl

Height
5.
.345309
.345309
.345309
.345309
.345309
.345309
.345309
.345309
.345309
.345309
.345309
.345309

345309

random="1|FamilyID,

data=data)



Programming — Get the estimated coefficients

1 fit.1lme =

5

lmer (Weight "Height +(1|FamilyID),
coef (fit.1lme) $FamilyID

(Intercept)

© 00 N O O WN -

10

e
w N -
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data=data)



Programming — Test random effects

Z = as.matrix(bdiag(split(rep(l, dim(data) [1]), data$FamilyID)))

fitl = Im(data$Weight ~ 0 + data$Height + Z)

1
2
3 £it0 = Im(data$Weight ~ data$Height)
4
5 anova (fit0, fit1l)

Analysis of Variance Table

Model 1: data$Weight ~ data$Height

Model 2: data$Weight ~ O + data$Height + Z
Res.Df RSS Df Sum of Sq F Pr(GF)

1 69 55856

2 52 32122 17 23734 2.26 0.01261 *

Signif. codes: O ‘x*x*’ 0.001 ‘**’ 0.01 ‘x> 0.056 ‘.’ 0.1 ¢ ’ 1



