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Weight versus height example

» A dataset contains the heights and weights of 71 people from 18 families.

» A naive linear regression model:
Wi = a+ BHy + e,

where Wy, is the weight of the kth person and Hy, is his/her height.

Anything wrong with the linear regression assumptions?



LINE Assumptions

» Linear: it might be more realistic to assume
Wi = a+ BH? + €.

Justification: Body Mass Index (BMI)

» Independence: weights of people in the same family are highly correlated.
Potential confounders: gene, habits, environment.

> Normal: can be diagnosed later.

» Equal variance: may need to take a logarithm of the weight.



LINE Assumptions

» Linear: it might be more realistic to assume
Wi = a+ BH? + €.

Justification: Body Mass Index (BMI)

» Independence: weights of people in the same family are highly correlated.
Potential confounders: gene, habits, environment.

> Normal: can be diagnosed later.

» Equal variance: may need to take a logarithm of the weight.

let us focus on the correlation for now.



Model update

In order to incorporate the within-family correlation, we assume

Wij = a; + BHij + €ij

> The index ij refers to the jth person in the ith family.
P Intercept «; is family-specific.
» ¢;; is normal-distributed and is independent with other variabes.

» «;'s are |.1.D.



Correlation

» Alice and Bob from the same family:
Cov(Wij, Wij/) = Cov(oy + SH;j + €5, + BH;j + eij/)
= Cov(a; + €5, o + €51)
= Var(a;) > 0
» Alice and Bob from different families:
COV(WZ‘]’, VVZ‘/]‘/) = COV(O&Z‘ + ﬁHij + €5, iy + /BHZ'/J'/ + ei/j/)
= COV(O(Z‘ + €ij, Oy + ei’j’)

= Cov(ay, ayr)
=0



Model reformat

We can also write
Wij :Oé—FBHij—Fbi X 1—1—61']'

where a = E[o;] and b; = a; — .
Furthermore, we vectorize it by family:

Wi=a+BH; +bZ;+ €

where Z; = (1,1,...,1)7.



Linear Mixed Effects (LME) Model

y; = X;08 + Z;b; + €, fori=1,...,N.

yi: n; X 1 vector of responses of the ith cluster/group.
X;: n; x m design matrix of fixed effects.

B: m x 1 vector of fixed effects coefficents.

Z;: n; X k design matrix of random effects.

b;: k x 1 vector of random effect coefficients.

vVvVvYvYyVvyVvyy

€;: n; X 1 vector of error terms.



Examples

> Weight-height relation for different families.
» Social behaviors for people of different ages.
» Stock price movement for companies in different sections/industries.

» Biological studies on animals of different sub-species.

In summary, you should consider a mixed-effects model if you do not believe your
model (and the coefficients) are the same for different sub-populations.



Distributional Assumptions

Normal assumptions for the error terms and for the random effect coefficients:
€ ~N(0,0%I), b; ~N(0,6°D)
warning! Sometimes, one only assumes Cov(b;) = o2D. But we assume normal here.

Consequently,
yi ~ N(X;8,0%V;), fori=1,...,N

with V; =T+ Z;DZ!.



A more compact formula

y=XB+n
where
Y1 X b1
Y2 X b2
Yy = . 5 X = . ; b= . , €=
YN XN by

and A = diag(Zl, Zg, ceey ZN) Also
Cov(n) = o2diag(V1,..., Vy)

€1
€2

EN



Special Model: random intercepts model

Yij = i + v uij + €.
where a; = o + b; and b; ~ N(0,02d).



Special Model: balanced random-coefficient model

We assume all clusters have the same size n; = n and
Z=X,=2;, i=1,...,N.
Then, LME becomes:
y=2ZB+Zb;+¢€, i=1,...,N.

A more compact form:
Y = ZB1" + E.

with Y = [y1,¥2,...,yn] and E has L.I.D. columns with covariance o?(I + ZDZ7).



Linear Growth Curve Model
We start with a linear regression model with random coefficients:

Yi = Zia; + €.
Furthermore, we assume the coefficients are linear combinations of other covariates:
a; = A;8+b;

with E(b;) = 0 and Cov(b;) = o2D.
Combine them:
y; = Z;A;B+ Z;b; + €.
Example:
» Index i: person. index j: time.
» 4 health indicator. Z: health-related covariates.

» A: whether the person takes a medicine or a placebo. 3: the effect of the
medicine.



Log-likelihood Function

» Distribution:
yi ~N(X:8,0%V;), Vi=I+2Z;DZ}.

> Probability:
1 1
p(yi | Xi,Z:,8,D,0°) = (@) 2 o2V eXP{ % — i — XiB)"V,  (yi Xzﬂ)}
> Log-likelihood:
Yoo 1 1
UB.D,0%) =3 {—;logzmz — 5 log| Vil = o5 (wi = XiB3) "V, (i Xz-m}
i=1

N
1 2 ! v
-1 {NTlogU +Z [log\‘@!—i‘az(yl’_X“@) \Z (yz‘—Xiﬁ)]}—i—C

i=1

where Np = Zf\il n; and C = —% log 2.



MLE for LME Models

N
1
—5 { Nrlogo™ log |V; 2Ty 1le.
(8.D.0%)c0 2{ Tl089 +;[og| i+ 0 %e] Vi e

Z(ﬂ’D7U2)

with V; =T + ZiDZl-T and e; = y; — X;03.

Optimization algorithms:
> Newton—Raphson — optimized gradient descent.
» Fisher scoring — a stable version of NR

» Expectation—Maximization — for missing value problems



The Parameter Space

» Nonnegative Definite Parameter Space:
©={(8,D,0*):B€R™ 0*>0,D > 0}

» Dimension: dim(®) =m + 1+ k(k+1)/2.
» Drawback: difficult to enforce nonnegativeness.

» Another parameter space:

©={(8,D,06%):BeR",0>>0,Vi=0fori=1,...

» Benefits: £(6) — —oo on boundary.



Profiling LLH Function

Consider the one-step optimization:

N
1 2 2 Ty -1
max —g {NTloga + E [log|Vi| + 0 %e; V; e

i=1
Partial derivative:

N

o N, 1 S

o7 = 02 T a2 e Vi e
=1

Setting above to zero, we have:

1N
A2 Ty —1,.
0——§ e; V. 'e;
I'V‘Ti:1

profiled log-likelihood function:

N N
1
(8, D) = (B, D,5%) = — {NT log) el Vi 'e;+ > log |V
=1 =1

}

bec



Profiling LLH Function

One step further:

N N
1
mﬁax —3 {NTlog E e?%*1e¢+ E 10g\Vi|}
i=1 i=1

4p(B,D)
Equivalent to:
N
. Ty, —1
min e V. "e;

Set the partial derivative to zero:



Profiling LLH Function

Solution:
N -1/ N
B= (Z xt Vﬂ)@) (Z x! Vﬂyz-)
i=1 i=1
The above solution is the Generalized Least Squares (GLS) estimator.
Further profiled log-likelihood function:

N
N 1 _
(,(D) = £,(3,D) = —3 {NT log (syy — sgySmlsxy) + Zlog \V;|}
i=1

where s, =3, yz‘TVflyiy Soy =D Xz'T‘/flyi and Sy =), XiT‘/lei-

We can maximize £,(D) instead of £(3, D, c?) to speed up computation!



Profiling LLH Function

The final optimization:

N
1 _
max —o {NT log (syy — sz;ySmlsmy) + ; log H/;]}

Unfortunately, it usually has no analytical solution.

Let D be the optimum and Vl =TI+ ZiniT. Then, we have the MLE for the other
two parameters:

N -1 N

b= (z xm—lxi) (z Xm—ly@-)
z:lN A A 1z:l A

D (wi—XiB)'Vi (v — XiB)

=1

1
~2 L
O'—Nt



Optimizating ¢,(D)
Using Woodbury identity V; ! = I — Z;(D~' + Z!'Z;)~' Z]", we have
Sy= Y Yiyi— > Yl Zi(D'+ 2 2)" Z]y,
Sey=Y Xivi—Y X/Z(D '+ 2Z]Z) ' Z]y,
See=» X! Xi=Y XZ(D'+2Z]Z) ' Z] X,

Using Sylvester's identity |I + Z;DZ]| = |I + DZ} Z;|, we have
log |V;| = log(|D||D™" + Z{' Z;) = log|D™" + Z{' Z;| — log | D™

Benefits:

» Complicated computation (determinant, inverse) on n; X n; matrices are now on
k x k matrices.

> Many quantities can be pre-computed.

» Optimization can be done with respect to D!,



Optimizating £,(D 1)

For algorithms, it is necessary to know the partial derivative of Ep(D_l).

dlog|V;| = tr [(D™' + 2] Z;)"'dD™"| — tr [DdD ™|
dsyy=> yl Z(D'+ 2l Z,)'dD (D' + 2] 2,)"' Z]'y:
dsey =Y XZ(D '+ 2 Z) 'dD (D' + 2] ;) Z['y;
dS.e =Y X[ Z(D'+ Z[Z,)'dD" (D' + 2] ;)" Z] X,



Optimizating £,(D 1)

Eventually, we have

N

o6,(DY) 1 [ Nr T T
—_— = — = Gz — ND GzZz i€ Zsz
oD~! 2 ; " Syy — Sgysmsxy ; e

where

G,= (D' +2zl'z)™!
ei =Yi — XiS,, Szy



Restricted MLE

The MLE for o2 is estimated from é; = y; — X;/3 directly:

o] al
_ﬁz i

&2 is in general biased for o2 because é; involves 3.

The likelihood function (after certain modifications) that disentangles B from other
estimators is called the restricted likelihood function.

The method that maximizes the restricted likelihood function is called restricted
maximum likelihood (REML).



REML

» Consider a linear regression model y ~ N (X3, V).

> The observation can be decomposed into two orthogonal parts: X,@ and
ée=y— Xg.
» Why orthogonal?
Cov(Xf3,é) = Cov (Hy,(I - H)y)=HV(I — H) = 0.
» Therefore, we can write:
. 1
(e, V) =Ly, V)= LB, V)= {log| X"V X|+1og|V|+e&TV e}

» Furthermore, we can have the restricted log-likelihood:

lr(B,V) == —% {log | X"V X[ +1og|V|+ (y — XB) 'V 'y — XPB)}



REML — Bayesian Perspective

We take a non-informative prior on 3 (i.e. uniform). Then the profiled likelihood
function is

Lp(V) = /m L(B,V)dB « |V XTV X2 exp {—;(y —XB) vy - Xﬁ)}

» Why non-informative?
» Why independent?



REML for LME

» Back to linear mixed models, we have

N
1
ER(BvaO'Q) = _5{(NT - m) log02 + log ZXlTV;_lxz
=1
N
+> [log Vil + 0 2(y: = X.8)"V, My — X.8)] |
i=1

> log |20, X[V X,

» (N7 —m)logo?

vs. 3k log [V




Profiled REML

» Maximize £r(3, D, c?):
N

= S (- XV (- XiB)

NT—m -
i=1

» Therefore the profiled restricted LLH is

(8, D) =~ { (Ng —m 1og2 - X8V, (yi — Xi)

N N
+log| > X7V, X+ [log | Vil |
=1 =1




REML summary

» likelihood function based on the transformed data.
» likelihood function independent of fixed effect coefficients.
» unbiased estimators for variance components.

» R functions, including Ime and Imer, support both REML and ML.



Balanced Random-Coefficient Model

» Assumption 1: Z =X, =Z;fori=1,...,N. (so V; =V)
» Assumption 2: n;, =nfori=1,...,N.
> Interpretation:
yi=Z(B+bi) + €,
where 3 is the expectation of coefficients and b; is the random part.

» Example: repeated measure of patients.



Balanced Random-Coefficient Model

» Fixed-effect coefficients:
Bars = Bors = (Z272)"1 27y

where y = N71 3" y;.

» Variance:
1 N
Gr = Ohmr = Nn—m) Syl (I -2(Z2"2) ' Z" )y,
i=1
; 1 ..
Dy = NT(ZTZ)_lzTEETZ(ZTZ)_I —(ZzTz)™!
oML
~ 1 oA
DRML — 7A2(ZTZ)_1ZTEETZ(ZTZ)_1 _ (ZTZ)—I
(N =1)631

where EET = >ilyi — ZB)(yi - ZB)T-



Balanced Random-Coefficient Model

» Log-likelihood

/€:
N 2 T 1 T T -1
Y {nloga +log|I +Z DZ’+W;(yi_Z’B) (I+Z'DZ)  (y;— Z03)

> Use

Vi=1-zZD'+2z%2)'z"
V'Zz=zD'+2z"z)'D!



Fitting Linear Mixed-effect Models in R

» Datasets

» Download from the author’s GitHub repository.
> https://github.com/eugenedemidenko/mixedmodels
> datasets are stored in .txt files in Data/MixedModels folder.

> Packages
» 1me function from nlme library.
» lmer function from lme4 library.
P> 1me supports more covariance structures.
» lmer has better scalability.



Load Dataset

Load the height-weight datasets from Family.txt file.

1 data = read.table("./Data/MixedModels/Chapter02/Family.txt",
2 header=T, stringsAsFactors=F)
3 head(data)

Height Weight Sex ParentChild Age FamilyID

1 67.0 215 1 1 75 1
2 64.0 166 0 1 63 1
3 63.5 145 O 0 29 1
4 71.0 227 1 0 26 1
5 61.0 120 O 0 24 1
6 68.0 220 1 0 22 1



Fit LME with 1me () Function

1 library (nlme)
2 fit.lme = Ime(fixed=Weight "Height, random="1|FamilyID, data=data)

3 fit.1lme

> fixed argument specifies the fixed effect model. In this example, it is the linear
regression of Weight against Height.
» random argument specifies the random effect model.

» ~1 specifies that the random effect is on the intercept.
» FamilyID specifies the group variable.



Fit LME with 1me () Function

> . )
Linear mixed-effects model fit by REML Default estimation method: REML

Data: data » Coefficients from the fixed-effect
Log-restricted-likelihood: -331.6369 model.

Fixed: Weight ~ Height » Standard deviation for the
(Intercept) Height random-effect coefficients.

-206.832149 5.345309

Random effects:

Formula: ~1 | FamilyID
(Intercept) Residual

StdDev: 14.07057 24.7059

Number of Observations: 71
Number of Groups: 18



Fit LME with 1me () Function

To use ML, need to specify the method argument:

1 fit.1lme = lme(fixed=Weight "Height, random="1|FamilyID,
2 method="ML", data=data)
3 fit.1lme



Fit LME with 1me () Function

Linear mixed-effects model fit by maximum likelihood
Data: data
Log-likelihood: -334.7041

Fixed: Weight ~ Height > (a) Different likelihood values.

(Intercept) Height » (b) Different fixed-effect coefficients.
-205.015367  5.319309 > (c) Different variance parameters.
Why?

Random effects:

Formula: ~1 | FamilyID
(Intercept) Residual

StdDev: 13.34261 24.50155

Number of Observations: 71
Number of Groups: 18



Fit LME with 1me () Function

Linear mixed-effects model fit by maximum likelihood
Data: data
Log-likelihood: -334.7041

Fixed: Weight ~ Height > (a) Different likelihood values.

(Intercept) Height » (b) Different fixed-effect coefficients.
-205.015367  5.319309 > (c) Different variance parameters.
Why?
Random effects: )
Formula: “1 | FamilyID > (.a) .and (c): the use of restricted
likelihood.

(Intercept) Residual .
StdDev:  13.34261 24.50155 > (b): same formula for B¢Ls but with
different D's.
Number of Observations: 71
Number of Groups: 18



Fit LME with 1me () Function

To get more output information, we can call

1 summary (fit.1lme)

Linear mixed-effects model fit by maximum likelihood
Data: data
AIC BIC logLik
677.4082 686.4589 -334.7041

Random effects:

Formula: ~1 | FamilyID
(Intercept) Residual

StdDev: 13.34261 24.50155

Fixed effects: Weight ~ Height
Value Std.Error DF t-value p-value
(Intercept) -205.01537 54.08819 52 -3.790390  4e-04
Height 5.31931  0.78212 52 6.801126  0e+00
Correlation:
(Intr)
Height -0.997

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.10329358 -0.54475601 -0.08698002 0.36755416 3.64634517

Number of Observations: 71
Number of Groups: 18



Fit LME with 1me () Function

» height coefficient is random



Fit LME with 1me () Function

» height coefficient is random

1 lme(fixed=Weight "Height, random="1+Height|FamilyID, data=data)

» group indicated by FamilylD and Sex



Fit LME with 1me () Function

» height coefficient is random

1 lme(fixed=Weight "Height, random="1+Height|FamilyID, data=data)

» group indicated by FamilylD and Sex

1 lme (fixed=Weight "Height, random="1|FamilyID/Sex, data=data)



Fit LME with 1mer () Function

1
2
3

library (lme4)

fit.lme
fit.1lme

= lmer (Weight "Height+(1|FamilyID), data=data)

Linear mixed model fit by REML [’lmerMod’]

Formula: Weight ~ Height + (1 | FamilyID)
Data: data

REML criterion at convergence: 663.2737

Random effects:

Groups  Name Std.Dev.
FamilyID (Intercept) 14.07
Residual 24.71

Number of obs: 71, groups: FamilyID, 18
Fixed Effects:

(Intercept) Height

-206.832 5.345



Fit LME with 1lmer () Function

Do not foget ”()” for random effects

1 fit.1lme.wrong = lmer (Weight Height+1|FamilyID, data=data)
2 fit.1lme.wrong

Linear mixed model fit by REML [’lmerMod’]

Formula: Weight ~ Height + 1 | FamilyID
Data: data

REML criterion at convergence: 697.5127

Random effects:

Groups  Name Std.Dev. Corr
FamilyID (Intercept) 33.4422

Height 0.5802 -1.00
Residual 33.5836

Number of obs: 71, groups: FamilyID, 18
Fixed Effects:
(Intercept)
160.9
optimizer (nloptwrap) convergence code: O (0K) ; O optimizer warnings; 2 lme4 warnings



Fit LME with 1mer () Function

Use REML argument to choose the estimation method.
1 fit.1lme = lmer(Weight “"Height+(1|FamilyID), REML=F, data=data)
2 fit.1lme

Linear mixed model fit by maximum likelihood [’lmerMod’]
Formula: Weight ~ Height + (1 | FamilyID)

Data: data
AIC BIC logLik deviance df.resid
677.4082 686.4589 -334.7041 669.4082 67
Random effects:
Groups  Name Std.Dev.
FamilyID (Intercept) 13.34
Residual 24.50

Number of obs: 71, groups: FamilyID, 18
Fixed Effects:

(Intercept) Height

-205.015 5.319



Fit LME with 1lmer () Function

P height coefficient is random

1 lmer (Weight "Height+(1+Height |FamilyID), data=data)

> Two-way group structure

1 lmer (Weight "Height+(1|FamilyID/Sex), data=data)

» Force independent random effects

1 lmer (Weight "Height+(1+Height | |FamilyID), data=data)



Maximization Algorithms

To maximize ¢(@), the iterative algorithms update the value of 3 by

0t =9 L N H 'Vt

» Newton Raphson: H = —V/¢V7 is the negative Hessian matrix of /.
» Fisher scoring: H = —E[V/{V] is the negative information matrix.

» EM algorithm: H is some positive definite matrix.



A Note on EM Algorithm

EM algorithm is used to maximize the marginal likelihood function when missing data
exists.

max 0(X10)= log/L(X,Y | 0)dY

» Expectation step: compute the expected complete log-likelihood function given
the observed data X and the parameter.

QO | 0W) = /e(X,Y 1 0)p(Y | X,0)dy

> Maximization step: maximize the expected log-likelihood function.

00+ = argmax Q(6 | %)
(4



