STAT 574 Linear and Nonlinear Mixed Models

Lecture 2: Linear Mixed Models and Estimation

Chencheng Cai

Washington State University

Weight versus height example

- ▶ A dataset contains the heights and weights of 71 people from 18 families.
- ► A naive linear regression model:

$$W_k = \alpha + \beta H_k + \epsilon_k,$$

where W_k is the weight of the kth person and H_k is his/her height.

Anything wrong with the linear regression assumptions?

LINE Assumptions

Linear: it might be more realistic to assume

$$W_k = \alpha + \beta H_k^2 + \epsilon_k.$$

Justification: Body Mass Index (BMI)

- ► Independence: weights of people in the same family are highly correlated. Potential confounders: gene, habits, environment.
- Normal: can be diagnosed later.
- ▶ Equal variance: may need to take a logarithm of the weight.

LINE Assumptions

Linear: it might be more realistic to assume

$$W_k = \alpha + \beta H_k^2 + \epsilon_k.$$

Justification: Body Mass Index (BMI)

- ► Independence: weights of people in the same family are highly correlated. Potential confounders: gene, habits, environment.
- Normal: can be diagnosed later.
- ▶ Equal variance: may need to take a logarithm of the weight.

let us focus on the correlation for now.

Model update

In order to incorporate the within-family correlation, we assume

$$W_{ij} = \alpha_i + \beta H_{ij} + \epsilon_{ij}$$

- ▶ The index ij refers to the jth person in the ith family.
- ▶ Intercept α_i is family-specific.
- $ightharpoonup \epsilon_{ij}$ is normal-distributed and is independent with other variabes.
- $ightharpoonup \alpha_i$'s are I.I.D.

Correlation

Alice and Bob from the same family:

$$Cov(W_{ij}, W_{ij'}) = Cov(\alpha_i + \beta H_{ij} + \epsilon_{ij}, \alpha_i + \beta H_{ij'} + \epsilon_{ij'})$$

$$= Cov(\alpha_i + \epsilon_{ij}, \alpha_i + \epsilon_{ij'})$$

$$= Var(\alpha_i) > 0$$

Alice and Bob from different families:

$$Cov(W_{ij}, W_{i'j'}) = Cov(\alpha_i + \beta H_{ij} + \epsilon_{ij}, \alpha_{i'} + \beta H_{i'j'} + \epsilon_{i'j'})$$

$$= Cov(\alpha_i + \epsilon_{ij}, \alpha_{i'} + \epsilon_{i'j'})$$

$$= Cov(\alpha_i, \alpha_{i'})$$

$$= 0$$

Model reformat

We can also write

$$W_{ij} = \alpha + \beta H_{ij} + b_i \times 1 + \epsilon_{ij}$$

where $\alpha = \mathbb{E}[\alpha_i]$ and $b_i = \alpha_i - \alpha$.

Furthermore, we vectorize it by family:

$$\boldsymbol{W}_i = \alpha + \beta \boldsymbol{H}_i + b_i \boldsymbol{Z}_i + \boldsymbol{\epsilon}_i$$

where
$$Z_i = (1, 1, ..., 1)^T$$
.

Linear Mixed Effects (LME) Model

$$y_i = X_i \beta + Z_i b_i + \epsilon_i$$
, for $i = 1, \dots, N$.

- ▶ y_i : $n_i \times 1$ vector of responses of the ith cluster/group.
- **X_i**: $n_i \times m$ design matrix of fixed effects.
- \triangleright β : $m \times 1$ vector of fixed effects coefficients.
- ▶ Z_i : $n_i \times k$ design matrix of random effects.
- ▶ b_i : $k \times 1$ vector of random effect coefficients.
- $ightharpoonup \epsilon_i$: $n_i imes 1$ vector of error terms.

Examples

- Weight-height relation for different families.
- Social behaviors for people of different ages.
- Stock price movement for companies in different sections/industries.
- Biological studies on animals of different sub-species.

In summary, you should consider a mixed-effects model if you do not believe your model (and the coefficients) are the same for different sub-populations.

Distributional Assumptions

Normal assumptions for the error terms and for the random effect coefficients:

$$oldsymbol{\epsilon}_i \sim \mathcal{N}(oldsymbol{0}, \sigma^2 oldsymbol{I}), \quad oldsymbol{b}_i \sim \mathcal{N}(oldsymbol{0}, \sigma^2 oldsymbol{D})$$

warning! Sometimes, one only assumes $Cov(b_i) = \sigma^2 D$. But we assume normal here.

Consequently,

$$\mathbf{y}_i \sim \mathcal{N}(\mathbf{X}_i \boldsymbol{\beta}, \sigma^2 \mathbf{V}_i), \quad \text{ for } i = 1, \dots, N$$

with $V_i = I + Z_i D Z_i^T$.

A more compact formula

$$y = X\beta + \eta$$

where

$$m{y} = egin{bmatrix} m{y}_1 \ m{y}_2 \ dots \ m{y}_N \end{bmatrix}, \; m{X} = egin{bmatrix} m{X}_1 \ m{X}_2 \ dots \ m{X}_N \end{bmatrix}, \; m{b} = egin{bmatrix} m{b}_1 \ m{b}_2 \ dots \ m{b}_N \end{bmatrix}, \; m{\epsilon} = egin{bmatrix} m{\epsilon}_1 \ m{\epsilon}_2 \ dots \ m{\epsilon}_N \end{bmatrix}$$

and $\boldsymbol{A} = \operatorname{diag}(\boldsymbol{Z}_1, \boldsymbol{Z}_2, \dots, \boldsymbol{Z}_N)$. Also

$$\operatorname{Cov}(\boldsymbol{\eta}) = \sigma^2 \operatorname{diag}(\boldsymbol{V}_1, \dots, \boldsymbol{V}_N)$$

Special Model: random intercepts model

$$y_{ij} = \alpha_i + \boldsymbol{\gamma}' \boldsymbol{u}_{ij} + \epsilon_{ij}.$$

where $\alpha_i = \alpha + b_i$ and $b_i \sim \mathcal{N}(0, \sigma^2 d)$.

Special Model: balanced random-coefficient model

We assume all clusters have the same size $n_i = n$ and

$$Z = X_i = Z_i, \quad i = 1, \dots, N.$$

Then, LME becomes:

$$y_i = Z\beta + Zb_i + \epsilon_i, \quad i = 1, \dots, N.$$

A more compact form:

$$Y = Z\beta 1^T + E.$$

with $m{Y} = [m{y}_1, m{y}_2, \dots, m{y}_N]$ and $m{E}$ has I.I.D. columns with covariance $\sigma^2(m{I} + m{Z} m{D} m{Z}^T)$.

Linear Growth Curve Model

We start with a linear regression model with random coefficients:

$$y_i = Z_i a_i + \epsilon_i$$
.

Furthermore, we assume the coefficients are linear combinations of other covariates:

$$a_i = A_i \beta + b_i$$

with $\mathbb{E}(\boldsymbol{b}_i) = 0$ and $\operatorname{Cov}(\boldsymbol{b}_i) = \sigma^2 \boldsymbol{D}$.

Combine them:

$$oldsymbol{y}_i = oldsymbol{Z}_i oldsymbol{A}_i oldsymbol{eta} + oldsymbol{Z}_i oldsymbol{b}_i + oldsymbol{\epsilon}_i.$$

Example:

- ▶ Index *i*: person. index *j*: time.
- \triangleright y: health indicator. Z: health-related covariates.
- ▶ A: whether the person takes a medicine or a placebo. β : the effect of the medicine

Log-likelihood Function

Distribution:

$$oldsymbol{y}_i \sim \mathcal{N}(oldsymbol{X}_ioldsymbol{eta}, \sigma^2oldsymbol{V}_i), \quad oldsymbol{V}_i = oldsymbol{I} + oldsymbol{Z}_i Doldsymbol{Z}_i^T.$$

► Probability:

$$p(\boldsymbol{y}_i \mid \boldsymbol{X}_i, \boldsymbol{Z}_i, \boldsymbol{\beta}, \boldsymbol{D}, \sigma^2) = \frac{1}{(2\pi)^{n_i/2} \sqrt{|\sigma^2 \boldsymbol{V}_i|}} \exp\left\{-\frac{1}{2\sigma^2} (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta})^T \boldsymbol{V}_i^{-1} (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta})\right\}$$

Log-likelihood:

$$egin{aligned} \ell(oldsymbol{eta}, oldsymbol{D}, \sigma^2) &= \sum_{i=1}^N \left\{ -rac{n_i}{2} \log 2\pi \sigma^2 - rac{1}{2} \log |oldsymbol{V}_i| - rac{1}{2\sigma^2} (oldsymbol{y}_i - oldsymbol{X}_i oldsymbol{eta})^T oldsymbol{V}_i^{-1} (oldsymbol{y}_i - oldsymbol{X}_i oldsymbol{eta})
ight. \\ &= -rac{1}{2} \left\{ N_T \log \sigma^2 + \sum_{i=1}^N \left[\log |oldsymbol{V}_i| + rac{1}{\sigma^2} (oldsymbol{y}_i - oldsymbol{X}_i oldsymbol{eta})^T oldsymbol{V}_i^{-1} (oldsymbol{y}_i - oldsymbol{X}_i oldsymbol{eta})
ight.
ight. + C \left. \left[\log |oldsymbol{V}_i| + rac{1}{\sigma^2} (oldsymbol{y}_i - oldsymbol{X}_i oldsymbol{eta})^T oldsymbol{V}_i^{-1} (oldsymbol{y}_i - oldsymbol{X}_i oldsymbol{eta})
ight.
ight.
ight. \end{aligned}$$

where $N_T = \sum_{i=1}^N n_i$ and $C = -\frac{N_T}{2} \log 2\pi$.

MLE for LME Models

$$\max_{(\boldsymbol{\beta}, \boldsymbol{D}, \sigma^2) \in \boldsymbol{\Theta}} \underbrace{-\frac{1}{2} \left\{ N_T \log \sigma^2 + \sum_{i=1}^{N} \left[\log |\boldsymbol{V}_i| + \sigma^{-2} \boldsymbol{e}_i^T \boldsymbol{V}_i^{-1} \boldsymbol{e}_i \right] \right\}}_{\ell(\boldsymbol{\beta}, \boldsymbol{D}, \sigma^2)}$$

with
$$oldsymbol{V}_i = oldsymbol{I} + oldsymbol{Z}_i oldsymbol{D} oldsymbol{Z}_i^T$$
 and $oldsymbol{e}_i = oldsymbol{y}_i - oldsymbol{X}_i oldsymbol{eta}$.

Optimization algorithms:

- ► Newton-Raphson optimized gradient descent.
- ► Fisher scoring a stable version of NR
- Expectation–Maximization for missing value problems

The Parameter Space

Nonnegative Definite Parameter Space:

$$\boldsymbol{\Theta} = \{ (\boldsymbol{\beta}, \boldsymbol{D}, \boldsymbol{\sigma}^2) : \boldsymbol{\beta} \in \mathbb{R}^m, \sigma^2 > 0, \boldsymbol{D} \succeq 0 \}$$

- ▶ Dimension: $\dim(\mathbf{\Theta}) = m + 1 + k(k+1)/2$.
- ▶ Drawback: difficult to enforce nonnegativeness.
- Another parameter space:

$$\Theta = \{ (\boldsymbol{\beta}, \boldsymbol{D}, \boldsymbol{\sigma}^2) : \boldsymbol{\beta} \in \mathbb{R}^m, \sigma^2 > 0, \boldsymbol{V}_i \succ 0 \text{ for } i = 1, \dots, N \}$$

▶ Benefits: $\ell(\theta) \to -\infty$ on boundary.

Consider the one-step optimization:

$$\max_{\sigma^2} \ -\frac{1}{2} \left\{ N_T \log \sigma^2 + \sum_{i=1}^N \left[\log |\boldsymbol{V}_i| + \sigma^{-2} \boldsymbol{e}_i^T \boldsymbol{V}_i^{-1} \boldsymbol{e}_i \right] \right\}$$

Partial derivative:

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{N_t}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{N} \boldsymbol{e}_i^T \boldsymbol{V}_i^{-1} \boldsymbol{e}_i.$$

Setting above to zero, we have:

$$\hat{\sigma}^2 = rac{1}{N_T} \sum_{i}^{N} oldsymbol{e}_i^T oldsymbol{V}_i^{-1} oldsymbol{e}_i$$

profiled log-likelihood function:

$$\ell_p(\boldsymbol{\beta}, \boldsymbol{D}) = \ell(\boldsymbol{\beta}, \boldsymbol{D}, \hat{\sigma}^2) = -\frac{1}{2} \left\{ N_T \log \sum_{i=1}^N \boldsymbol{e}_i^T \boldsymbol{V}_i^{-1} \boldsymbol{e}_i + \sum_{i=1}^N \log |\boldsymbol{V}_i| \right\} + C$$

One step further:

$$\max_{\boldsymbol{\beta}} \ \underbrace{-\frac{1}{2} \left\{ N_T \log \sum_{i=1}^{N} \boldsymbol{e}_i^T \boldsymbol{V}_i^{-1} \boldsymbol{e}_i + \sum_{i=1}^{N} \log |\boldsymbol{V}_i| \right\}}_{\ell_p(\boldsymbol{\beta}, \boldsymbol{D})}$$

Equivalent to:

$$\min_{oldsymbol{eta}} \; \sum_{i=1}^N oldsymbol{e}_i^T oldsymbol{V}_i^{-1} oldsymbol{e}_i$$

Set the partial derivative to zero:

$$2\sum_{i=1}^{N}(\boldsymbol{y}_{i}-\boldsymbol{X}_{i}\boldsymbol{\beta})^{T}\boldsymbol{V}_{i}^{-1}\boldsymbol{X}_{i}=0$$

Solution:

$$\hat{oldsymbol{eta}} = \left(\sum_{i=1}^N oldsymbol{X}_i^T oldsymbol{V}_i^{-1} oldsymbol{X}_i
ight)^{-1} \left(\sum_{i=1}^N oldsymbol{X}_i^T oldsymbol{V}_i^{-1} oldsymbol{y}_i
ight)$$

The above solution is the Generalized Least Squares (GLS) estimator. Further profiled log-likelihood function:

$$\ell_p(\boldsymbol{D}) = \ell_p(\hat{\boldsymbol{\beta}}, \boldsymbol{D}) = -\frac{1}{2} \left\{ N_T \log \left(s_{yy} - \boldsymbol{s}_{xy}^T \boldsymbol{S}_{xx}^{-1} \boldsymbol{s}_{xy} \right) + \sum_{i=1}^N \log |\boldsymbol{V}_i| \right\}$$

where
$$s_{yy} = \sum_i \boldsymbol{y}_i^T \boldsymbol{V}_i^{-1} \boldsymbol{y}_i$$
, $\boldsymbol{s}_{xy} = \sum_i \boldsymbol{X}_i^T \boldsymbol{V}_i^{-1} \boldsymbol{y}_i$ and $\boldsymbol{S}_{xx} = \sum_i \boldsymbol{X}_i^T \boldsymbol{V}_i^{-1} \boldsymbol{X}_i$.

We can maximize $\ell_p(\mathbf{D})$ instead of $\ell(\boldsymbol{\beta}, \mathbf{D}, \sigma^2)$ to speed up computation!

The final optimization:

$$\max_{\boldsymbol{D}} \ -\frac{1}{2} \left\{ N_T \log \left(s_{yy} - \boldsymbol{s}_{xy}^T \boldsymbol{S}_{xx}^{-1} \boldsymbol{s}_{xy} \right) + \sum_{i=1}^N \log |\boldsymbol{V}_i| \right\}$$

Unfortunately, it usually has no analytical solution.

Let $\hat{m{D}}$ be the optimum and $\hat{m{V}}_i = m{I} + m{Z}_i \hat{m{D}} m{Z}_i^T$. Then, we have the MLE for the other two parameters:

$$\hat{oldsymbol{eta}} = \left(\sum_{i=1}^{N} oldsymbol{X}_i^T \hat{oldsymbol{V}}_i^{-1} oldsymbol{X}_i
ight)^{-1} \left(\sum_{i=1}^{N} oldsymbol{X}_i^T \hat{oldsymbol{V}}_i^{-1} oldsymbol{y}_i
ight) \ \hat{\sigma}^2 = rac{1}{N_t} \sum_{i=1}^{N} (oldsymbol{y}_i - oldsymbol{X}_i \hat{oldsymbol{eta}})^T \hat{oldsymbol{V}}_i^{-1} (oldsymbol{y}_i - oldsymbol{X}_i \hat{oldsymbol{eta}})$$

Optimizating $\ell_p(\boldsymbol{D})$

Using Woodbury identity $V_i^{-1} = \boldsymbol{I} - \boldsymbol{Z}_i(\boldsymbol{D}^{-1} + \boldsymbol{Z}_i^T\boldsymbol{Z}_i)^{-1}\boldsymbol{Z}_i^T$, we have

$$s_{yy} = \sum oldsymbol{y}_i^T oldsymbol{y}_i - \sum oldsymbol{y}_i^T oldsymbol{Z}_i(oldsymbol{D}^{-1} + oldsymbol{Z}_i^T oldsymbol{Z}_i)^{-1} oldsymbol{Z}_i^T oldsymbol{y}_i \ s_{xy} = \sum oldsymbol{X}_i^T oldsymbol{y}_i - \sum oldsymbol{X}_i^T oldsymbol{Z}_i(oldsymbol{D}^{-1} + oldsymbol{Z}_i^T oldsymbol{Z}_i)^{-1} oldsymbol{Z}_i^T oldsymbol{y}_i \ S_{xx} = \sum oldsymbol{X}_i^T oldsymbol{X}_i - \sum oldsymbol{X}_i^T oldsymbol{Z}_i(oldsymbol{D}^{-1} + oldsymbol{Z}_i^T oldsymbol{Z}_i)^{-1} oldsymbol{Z}_i^T oldsymbol{X}_i \$$

Using Sylvester's identity $|m{I}+m{Z}_im{D}m{Z}_i^T|=|m{I}+m{D}m{Z}_i^Tm{Z}_i|$, we have

$$\log |V_i| = \log(|D||D^{-1} + Z_i^T Z_i) = \log |D^{-1} + Z_i^T Z_i| - \log |D^{-1}|$$

Benefits:

- ▶ Complicated computation (determinant, inverse) on $n_i \times n_i$ matrices are now on $k \times k$ matrices.
- Many quantities can be pre-computed.
- ▶ Optimization can be done with respect to D^{-1} .

Optimizating $\ell_p(\boldsymbol{D}^{-1})$

For algorithms, it is necessary to know the partial derivative of $\ell_p(\boldsymbol{D}^{-1})$.

$$d\log |\mathbf{V}_i| = \operatorname{tr} \left[(\mathbf{D}^{-1} + \mathbf{Z}_i^T \mathbf{Z}_i)^{-1} d\mathbf{D}^{-1} \right] - \operatorname{tr} \left[\mathbf{D} d\mathbf{D}^{-1} \right]$$

$$ds_{yy} = \sum \mathbf{y}_i^T \mathbf{Z}_i (\mathbf{D}^{-1} + \mathbf{Z}_i^T \mathbf{Z}_i)^{-1} d\mathbf{D}^{-1} (\mathbf{D}^{-1} + \mathbf{Z}_i^T \mathbf{Z}_i)^{-1} \mathbf{Z}_i^T \mathbf{y}_i$$

$$ds_{xy} = \sum \mathbf{X}_i^T \mathbf{Z}_i (\mathbf{D}^{-1} + \mathbf{Z}_i^T \mathbf{Z}_i)^{-1} d\mathbf{D}^{-1} (\mathbf{D}^{-1} + \mathbf{Z}_i^T \mathbf{Z}_i)^{-1} \mathbf{Z}_i^T \mathbf{y}_i$$

$$d\mathbf{S}_{xx} = \sum \mathbf{X}_i^T \mathbf{Z}_i (\mathbf{D}^{-1} + \mathbf{Z}_i^T \mathbf{Z}_i)^{-1} d\mathbf{D}^{-1} (\mathbf{D}^{-1} + \mathbf{Z}_i^T \mathbf{Z}_i)^{-1} \mathbf{Z}_i^T \mathbf{X}_i$$

Optimizating $\ell_p(\boldsymbol{D}^{-1})$

Eventually, we have

$$\frac{\partial \ell_p(\boldsymbol{D}^{-1})}{\partial \boldsymbol{D}^{-1}} = -\frac{1}{2} \left\{ \sum_{i=1}^N \boldsymbol{G}_i - N\boldsymbol{D} + \frac{N_T}{s_{yy} - \boldsymbol{s}_{xy}^T \boldsymbol{S}_{xx} \boldsymbol{s}_{xy}} \sum_{i=1}^N \boldsymbol{G}_i \boldsymbol{Z}_i^T \boldsymbol{e}_i \boldsymbol{e}_i^T \boldsymbol{Z}_i \boldsymbol{G}_i \right\}$$

where

$$egin{aligned} oldsymbol{G}_i &= (oldsymbol{D}_i^{-1} + oldsymbol{Z}_i^T oldsymbol{Z}_i)^{-1} \ e_i &= oldsymbol{y}_i - oldsymbol{X}_i oldsymbol{S}_{xx}^{-1} oldsymbol{s}_{xy} \end{aligned}$$

Restricted MLE

The MLE for σ^2 is estimated from $\hat{\boldsymbol{e}}_i = \boldsymbol{y}_i - \boldsymbol{X}_i \hat{\boldsymbol{\beta}}$ directly:

$$\hat{\sigma}^2 = rac{1}{N_t} \sum_{i=1}^N \hat{oldsymbol{e}}_i^T \hat{oldsymbol{V}}_i^{-1} \hat{oldsymbol{e}}_i$$

 $\hat{\sigma}^2$ is in general biased for σ^2 because \hat{e}_i involves $\hat{\beta}$.

The likelihood function (after certain modifications) that disentangles $\hat{\beta}$ from other estimators is called the **restricted likelihood** function.

The method that maximizes the restricted likelihood function is called **restricted maximum likelihood** (**REML**).

REML

- lacksquare Consider a linear regression model $oldsymbol{y} \sim \mathcal{N}(oldsymbol{X}oldsymbol{eta}, oldsymbol{V}).$
- The observation can be decomposed into two orthogonal parts: $X\hat{eta}$ and $\hat{e}=y-Xeta$.
- Why orthogonal?

$$\operatorname{Cov}(X\hat{\boldsymbol{\beta}},\hat{\boldsymbol{e}}) = \operatorname{Cov}(H\boldsymbol{y},(\boldsymbol{I}-\boldsymbol{H})\boldsymbol{y}) = H\boldsymbol{V}(\boldsymbol{I}-\boldsymbol{H}) = \boldsymbol{0}.$$

Therefore, we can write:

$$\ell(\hat{\boldsymbol{e}}, \boldsymbol{V}) = \ell(\boldsymbol{y}, \boldsymbol{V}) - \ell(\hat{\boldsymbol{\beta}}, \boldsymbol{V}) = -\frac{1}{2} \left\{ \log |\boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{X}| + \log |\boldsymbol{V}| + \hat{\boldsymbol{e}}^T \boldsymbol{V}^{-1} \hat{\boldsymbol{e}} \right\}$$

► Furthermore, we can have the restricted log-likelihood:

$$\ell_R(\boldsymbol{\beta}, \boldsymbol{V}) == -\frac{1}{2} \left\{ \log |\boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{X}| + \log |\boldsymbol{V}| + (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta})^T \boldsymbol{V}^{-1} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}) \right\}$$

REML — Bayesian Perspective

We take a non-informative prior on eta (i.e. uniform). Then the profiled likelihood function is

$$L_R(\boldsymbol{V}) = \int_{\mathbb{R}^m} L(\boldsymbol{\beta}, \boldsymbol{V}) d\boldsymbol{\beta} \propto |\boldsymbol{V}|^{-1/2} |\boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{X}|^{-1/2} \exp\left\{-\frac{1}{2} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}})^T \boldsymbol{V}^{-1} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}})\right\}$$

- ▶ Why non-informative?
- Why independent?

REML for LME

▶ Back to linear mixed models, we have

$$egin{aligned} \ell_R(oldsymbol{eta}, oldsymbol{D}, \sigma^2) &= -rac{1}{2} \Big\{ (N_T - m) \log \sigma^2 + \log \left| \sum_{i=1}^N oldsymbol{X}_i^T oldsymbol{V}_i^{-1} oldsymbol{X}_i
ight| \ &+ \sum_{i=1}^N \left[\log |oldsymbol{V}_i| + \sigma^{-2} (oldsymbol{y}_i - oldsymbol{X}_i oldsymbol{eta})^T oldsymbol{V}_i^{-1} (oldsymbol{y}_i - oldsymbol{X}_i oldsymbol{eta}) \Big] \Big\} \end{aligned}$$

- $lackbox{ log } \left|\sum_{i=1}^{N} oldsymbol{X}_i^T oldsymbol{V}_i^{-1} oldsymbol{X}_i
 ight| ext{ v.s. } \sum_{i=1}^{N} \log |oldsymbol{V}_i|$
- $ightharpoonup (N_T m) \log \sigma^2$

Profiled REML

Maximize $\ell_R(\boldsymbol{\beta}, \boldsymbol{D}, \sigma^2)$:

$$\hat{\sigma}_R^2 = rac{1}{N_T - m} \sum_{i=1}^N (oldsymbol{y}_i - oldsymbol{X}_i oldsymbol{eta})^T oldsymbol{V}_i^{-1} (oldsymbol{y}_i - oldsymbol{X}_i oldsymbol{eta})$$

► Therefore the profiled restricted LLH is

$$\ell_{Rp}(\boldsymbol{\beta}, \boldsymbol{D}) = -\frac{1}{2} \left\{ (N_T - m) \log \sum_{i=1}^{N} (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta})^T \boldsymbol{V}_i^{-1} (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta}) + \log \left| \sum_{i=1}^{N} \boldsymbol{X}_i^T \boldsymbol{V}_i^{-1} \boldsymbol{X}_i \right| + \sum_{i=1}^{N} [\log |\boldsymbol{V}_i|] \right\}$$

REML summary

- ▶ likelihood function based on the transformed data.
- likelihood function independent of fixed effect coefficients.
- unbiased estimators for variance components.
- ▶ R functions, including **Ime** and **Imer**, support both REML and ML.

Balanced Random-Coefficient Model

- lacksquare Assumption 1: $m{Z} = m{X}_i = m{Z}_i$ for $i = 1, \dots, N$. (so $m{V}_i = m{V}$)
- Assumption 2: $n_i = n$ for i = 1, ..., N.
- ► Interpretation:

$$oldsymbol{y}_i = oldsymbol{Z}(oldsymbol{eta} + oldsymbol{b}_i) + oldsymbol{\epsilon}_i,$$

where β is the expectation of coefficients and b_i is the random part.

Example: repeated measure of patients.

Balanced Random-Coefficient Model

Fixed-effect coefficients:

$$\hat{\boldsymbol{eta}}_{GLS} = \hat{\boldsymbol{eta}}_{OLS} = (\boldsymbol{Z}^T \boldsymbol{Z})^{-1} \boldsymbol{Z}^T \bar{\boldsymbol{y}}$$

where $\boldsymbol{y} = N^{-1} \sum_{i} \boldsymbol{y}_{i}$.

Variance:

$$\hat{\sigma}_{ML}^2 = \hat{\sigma}_{RML}^2 = rac{1}{N(n-m)} \sum_{i=1}^N oldsymbol{y}_i^T (oldsymbol{I} - oldsymbol{Z}(oldsymbol{Z}^Toldsymbol{Z})^{-1} oldsymbol{Z}^T) oldsymbol{y}_i
onumber \ \hat{oldsymbol{D}}_{ML} = rac{1}{N\hat{\sigma}_{ML}^2} (oldsymbol{Z}^Toldsymbol{Z})^{-1} oldsymbol{Z}^T \hat{oldsymbol{E}} \hat{oldsymbol{E}}^T oldsymbol{Z}(oldsymbol{Z}^Toldsymbol{Z})^{-1} - (oldsymbol{Z}^Toldsymbol{Z})^{-1}
onumber \ \hat{oldsymbol{D}}_{RML} = rac{1}{(N-1)\hat{\sigma}_{ML}^2} (oldsymbol{Z}^Toldsymbol{Z})^{-1} oldsymbol{Z}^T \hat{oldsymbol{E}} \hat{oldsymbol{E}}^T oldsymbol{Z}(oldsymbol{Z}^Toldsymbol{Z})^{-1} - (oldsymbol{Z}^Toldsymbol{Z})^{-1}
onumber \ \hat{oldsymbol{D}}^T oldsymbol{E}^T oldsymbol{Z}(oldsymbol{Z}^Toldsymbol{Z})^{-1} - (oldsymbol{Z}^Toldsymbol{Z}^Toldsymbol{Z})^{-1}
onumber \ \hat{oldsymbol{D}}^T oldsymbol{Z}^T oldsymbol{Z}^T oldsymbol{Z}^T oldsymbol{E} \hat{oldsymbol{E}}^T oldsymbol{Z}(oldsymbol{Z}^Toldsymbol{Z})^{-1} - (oldsymbol{Z}^Toldsymbol{Z}^Toldsymbol{Z}^Toldsymbol{Z}^T oldsymbol{Z}^T oldsym$$

where
$$\hat{\boldsymbol{E}}\hat{\boldsymbol{E}}^T = \sum_i (\boldsymbol{y}_i - \boldsymbol{Z}\hat{\boldsymbol{\beta}})(\boldsymbol{y}_i - \boldsymbol{Z}\hat{\boldsymbol{\beta}})^T.$$

Balanced Random-Coefficient Model

▶ Log-likelihood

$$\epsilon = -rac{N}{2}\left\{n\log\sigma^2 + \log|oldsymbol{I} + oldsymbol{Z}^Toldsymbol{D}oldsymbol{Z}| + rac{1}{N\sigma^2}\sum_i(oldsymbol{y}_i - oldsymbol{Z}oldsymbol{eta})^T(oldsymbol{I} + oldsymbol{Z}^Toldsymbol{D}oldsymbol{Z})^{-1}(oldsymbol{y}_i - oldsymbol{Z}oldsymbol{eta})
ight\}$$

Use

$$egin{aligned} oldsymbol{V}_i^{-1} &= oldsymbol{I} - oldsymbol{Z}(oldsymbol{D}^{-1} + oldsymbol{Z}^Toldsymbol{Z})^{-1}oldsymbol{Z}^T \ oldsymbol{V}_i^{-1}oldsymbol{Z} &= oldsymbol{Z}(oldsymbol{D}^{-1} + oldsymbol{Z}^Toldsymbol{Z})^{-1}oldsymbol{D}^{-1} \end{aligned}$$

Fitting Linear Mixed-effect Models in R

Datasets

- Download from the author's GitHub repository.
- https://github.com/eugenedemidenko/mixedmodels
- datasets are stored in .txt files in **Data/MixedModels** folder.

Packages

- lme function from nlme library.
- Imer function from 1me4 library.
- ▶ lme supports more covariance structures.
- lmer has better scalability.

Load Dataset

Load the height-weight datasets from Family.txt file.

	${ t Height}$	Weight	Sex	ParentChild	Age	FamilyID
1	67.0	215	1	1	75	1
2	64.0	155	0	1	63	1
3	63.5	145	0	0	29	1
4	71.0	227	1	0	26	1
5	61.0	120	0	0	24	1
6	68.0	220	1	0	22	1

Fit LME with 1me() Function

```
library(nlme)
fit.lme = lme(fixed=Weight~Height, random=~1|FamilyID, data=data)
fit.lme
```

- ► fixed argument specifies the fixed effect model. In this example, it is the linear regression of Weight against Height.
- random argument specifies the random effect model.
 - ~1 specifies that the random effect is on the intercept.
 - FamilyID specifies the group variable.

Linear mixed-effects model fit by REML Data: data
Log-restricted-likelihood: -331.6369
Fixed: Weight ~ Height
(Intercept) Height
-206.832149 5.345309

Random effects:

Formula: ~1 | FamilyID

(Intercept) Residual

StdDev: 14.07057 24.7059

Number of Observations: 71

Number of Groups: 18

- Default estimation method: REML
- Coefficients from the fixed-effect model.
- Standard deviation for the random-effect coefficients.

To use ML, need to specify the method argument:

```
fit.lme = lme(fixed=Weight~Height, random=~1|FamilyID,
method="ML", data=data)
fit.lme
```

Linear mixed-effects model fit by maximum likelihood

Data: data

Log-likelihood: -334.7041

Fixed: Weight ~ Height

(Intercept) Height

-205.015367 5.319309

Random effects:

Formula: ~1 | FamilyID

(Intercept) Residual

StdDev: 13.34261 24.50155

Number of Observations: 71

Number of Groups: 18

- ▶ (a) Different likelihood values.
- ▶ (b) Different fixed-effect coefficients.
- (c) Different variance parameters.

Why?

Linear mixed-effects model fit by maximum likelihood

Data: data

Log-likelihood: -334.7041

Fixed: Weight ~ Height

(Intercept) Height

-205.015367 5.319309

Random effects:

Formula: ~1 | FamilyID

(Intercept) Residual

StdDev: 13.34261 24.50155

Number of Observations: 71

Number of Groups: 18

- ▶ (a) Different likelihood values.
- ▶ (b) Different fixed-effect coefficients.
- (c) Different variance parameters.

Why?

- ► (a) and (c): the use of restricted likelihood.
- ightharpoonup (b): same formula for $\hat{m{eta}}_{GLS}$ but with different $\hat{m{D}}$'s.

To get more output information, we can call

summary(fit.lme)

```
Linear mixed-effects model fit by maximum likelihood
 Data: data
      ATC
               BIC logLik
 677.4082 686.4589 -334.7041
Random effects:
Formula: ~1 | FamilyID
       (Intercept) Residual
StdDev: 13 34261 24 50155
Fixed effects: Weight ~ Height
                Value Std.Error DF t-value p-value
(Intercept) -205.01537 54.08819 52 -3.790390 4e-04
Height
              5.31931 0.78212 52 6.801126 0e+00
Correlation:
      (Intr)
Height -0.997
Standardized Within-Group Residuals:
       Min
                               Med
                                                      Max
-2.10329358 -0.54475601 -0.08698002 0.36755416 3.64634517
Number of Observations: 71
Number of Groups: 18
```

▶ height coefficient is random

▶ height coefficient is random

```
1 lme(fixed=Weight~Height, random=~1+Height|FamilyID, data=data)
```

group indicated by FamilyID and Sex

height coefficient is random

```
1 lme(fixed=Weight~Height, random=~1+Height|FamilyID, data=data)
```

group indicated by FamilyID and Sex

```
1 lme(fixed=Weight~Height, random=~1|FamilyID/Sex, data=data)
```

```
1 library(lme4)
2 fit.lme = lmer(Weight~Height+(1|FamilyID), data=data)
3 fit.lme
        Linear mixed model fit by REML ['lmerMod']
        Formula: Weight ~ Height + (1 | FamilyID)
            Data: data
        REML criterion at convergence: 663.2737
        Random effects:
          Groups Name Std.Dev.
          FamilyID (Intercept) 14.07
          Residual 24.71
        Number of obs: 71, groups: FamilyID, 18
        Fixed Effects:
        (Intercept) Height
        -206.832 5.345
```

Do not foget "()" for random effects

```
1 fit.lme.wrong = lmer(Weight~Height+1|FamilyID, data=data)
2 fit.lme.wrong
        Linear mixed model fit by REML ['lmerMod']
        Formula: Weight ~ Height + 1 | FamilyID
            Data: data
        REML criterion at convergence: 697.5127
        Random effects:
          Groups Name Std.Dev. Corr
          FamilyID (Intercept) 33.4422
                  Height 0.5802 -1.00
          Residual
                             33.5836
        Number of obs: 71, groups: FamilyID, 18
        Fixed Effects:
        (Intercept)
            160.9
        optimizer (nloptwrap) convergence code: 0 (OK); 0 optimizer warnings; 2 lme4 warnings
```

Use REML argument to choose the estimation method.

```
1 fit.lme = lmer(Weight~Height+(1|FamilyID), REML=F, data=data)
2 fit.lme
        Linear mixed model fit by maximum likelihood ['lmerMod']
        Formula: Weight ~ Height + (1 | FamilyID)
          Data: data
            AIC BIC logLik deviance df.resid
          677.4082 686.4589 -334.7041 669.4082
        Random effects:
         Groups Name Std.Dev.
         FamilyID (Intercept) 13.34
         Residual 24.50
        Number of obs: 71, groups: FamilyID, 18
        Fixed Effects:
        (Intercept) Height
        -205.015 5.319
                                                 4□ > 4□ > 4 = > 4 = > = 990
```

height coefficient is random

```
lmer(Weight~Height+(1+Height|FamilyID), data=data)
```

► Two-way group structure

```
lmer(Weight~Height+(1|FamilyID/Sex), data=data)
```

► Force independent random effects

```
lmer(Weight~Height+(1+Height||FamilyID), data=data)
```

Maximization Algorithms

To maximize $\ell(\boldsymbol{\theta})$, the iterative algorithms update the value of $\boldsymbol{\beta}$ by

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \lambda_t \boldsymbol{H}_t^{-1} \nabla_{\boldsymbol{\theta}} \ell.$$

- Newton Raphson: $H = -\nabla \ell \nabla^T$ is the negative Hessian matrix of ℓ .
- ▶ Fisher scoring: $H = -\mathbb{E}[\nabla \ell \nabla]$ is the negative information matrix.
- ▶ EM algorithm: *H* is some positive definite matrix.

A Note on EM Algorithm

EM algorithm is used to maximize the marginal likelihood function when missing data exists.

$$\max_{\boldsymbol{\theta}} \ \ell(X \mid \boldsymbol{\theta}) = \log \int L(X, Y \mid \boldsymbol{\theta}) dY$$

Expectation step: compute the expected complete log-likelihood function given the observed data *X* and the parameter.

$$Q(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{(i)}) = \int \ell(X, Y \mid \boldsymbol{\theta}) p(Y \mid X, \boldsymbol{\theta}^{(i)}) dY$$

Maximization step: maximize the expected log-likelihood function.

$$\boldsymbol{\theta}^{(i+1)} = \underset{\boldsymbol{\theta}}{\operatorname{arg\,max}} \ Q(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{(i)})$$