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Influence analysis

» Influence analysis is a set of techniques used to identify and assess the impact of
individual data points on the overall model fit and parameter estimates.

» In this lecture, we consider the influence analysis as a sensitivity analysis of the
model fit to the data.

» Data influence: the sensitivity of the model to a infinitesimal purturbation in the
data.

> Model influence: the sensitivity of the model to the assumptions.



Linear Regression Model

Consider a linear regression model:
Yi = ,BT:E,- +¢€ Vi
The OLS estimator of 3 is given by
-1
B=(X"X)"'X"y= (Z zim] ) > iy,
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where X is the design matrix and y is the response vector.



Leverage

The leverage of the i-th observation is defined as the i-th diagonal element of the hat
matrix
H=XxXTx)'xT,

That is



Leverage

The sum of the leverages is equal to the number of parameters in the model:

where m is the number of parameters in the model.
» Observations with high leverage are called influential observations.
> |t measures how the predicted value is influenced by the i-th observation.



Leave-one-out

Another measure of influence is to check the change in the estimates of the parameters
when the i-th observation is removed from the data set.
The estimated parameter 3(;) when the i-th observation is removed is given by
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where X ;) and y;) are the design matrix and response vector with the i-th
observation removed.



Leave-one-out
We notice that
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Cook's distance

The confidence region for the estimator B is given by
{/8 : (:6 - B)T(XTX)il(IB - B) S mSQFa,m,n—m}

The Cook’s distance is defined as

Di=— (5 - BT (XTX)" (B — B)
ms
By previous result, we have
(yi —9:)*  hi
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Large values of D; indicate that the ¢-th observation has a large influence on the fitted
model.



Infinitesimal Influence (I-influence)

» D: data vector including all the observed values.
» t(D): a statistic of interest.

» The infinitesimal data influence is

L HD+ADe) (D) _04(D)
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Infinitesimal Influence (I-influence)

» Let ¢(0) be the log-likelihood function of the model.

» Consider a more general model ¢(0 | w) such that w = 0 corresponds to the
model of interest.

» The infinitesimal model influence is defined as
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Influence of the Dependent Variable

We consider the influence of y; on the estimated parameters fl
» The OLS solution is

B=(X"X)"'XTy=(X"X)" Z Tiy;.

» The influence of y; on B is given by

a8
0y;

=(X"X)a

> Two possibilities that the size of the influence is large:
> |x;| is large: the i-th observation is far from the center of the data.
» The direction of x; is close to the direction of the eigenvector of X7 X
corresponding to the smallest eigenvalue.



Influence of the Continuous Explanatory Variable

In particular, we are interested in
B

8$ik7

where x;;, is the k-th element of x;.
Use matrix calculus, we have (by considering x; as the only variable)

Therefore, .
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Influence of the Continuous Explanatory Variable

Now we have .
9B

Oy,

= (xTx)™! ((yi —Ji)ex — ﬁsz>

» First component: normalized residual.
» Second component: the influence through the dependent variable.

It is also connected to Cook's local influence, which is measured by
local influence of x;; on Br = v — Ui — Brqs

where ¢; is the residual of the regression of 2(¥) on the other variables.



Influence of the Binary Explanatory Variable

Now we assume x;; is a binary variable.
> A binary variable can be misclassified.

» We assume z;; is an observation for the true binary variable z;; such that
miscalssification occurs with probability g;.

» The true model should be

E(yi | zix) = a + Brzik
> But now
E(yi | wir) = o+ Br(zik + (1 — 224)qi)
» The influence of the misclassification is given by
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Influence on the Predicted Value

The predicted value is connected to the estimated parameters by
g = BT x;.
The influence can be transferred to the influence on the predicted value. That is
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Influence on Regression Characteristics

Y-influence on

» Coefficient of determination R2:
OR? 2
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> t-statistics with ¢t = SilD*l/Q,Bf where D = diag((XTX)il):
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Nonlinear Regression Models

Consider the nonlinear regression model:

yi = fi(B,x;) + €

The LS estimator (LSE) of 3 is given by



Influence of the dependent variable on the LSE
The influence of y; on the LSE ,3 is
0B
dyi

Taking partial derivative of the estimating equation w.r.t. y;, we have
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Influence of the explanatory variable on the LSE

We can follow the same procedure to get
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Influence on the predicted value

Let f(B) = (fl(B,wl),fg(B,wg), e ,fn(B,acn))T be the vector of predicted values.
The influence of y; on the predicted value is given by

of(B) _ of(B) 0B _GH"! Of:(B,x:)
yi 0B Oy

where

of(B)
B

This can be generalized to

8f(lé) — GH—lGT
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which is called the Jacobian leverage.



Logistic Regression

Consider the logistic regression model:

Bl
Ply;=1) = 1+ eBlw:
For logistic regressions, we use MLE.
The log-likelihood function is given by
n
(8) =Y [~ og(1 + 7" =)]
i=1

The score function is given by
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Influence of the covariate on the MLE

Take the partial derivative of the score function w.r.t. x;, we have

1 Bl N Bl 8B
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This gives the influence of the covariate on the MLE:
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where



Influence on the predicted probability

The predicted probability is given by

eﬂTwi

pi = 1_|_6L§T93i

The influence of x; on the predicted probability is given by the chain rule:
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Influence of measurement error

Now we consider the assumption that the covariate x; are fixed and known.
We consider a broader model with measurement error in the covariate such that

T = z; + 0S;,

where z; is the designed covariate, s; is the standardized measurement error, and o is
the standard deviation of the measurement error.

The model is given by
P(y; =1) = H(y"u; + 72;)

for some probability function H.
The observed model is

Py; = 1) = E[H (v w; + 72 + 705)]

The parameters is 3 = (v,7)7.



Influence of measurement error

The influence of the measurement error on the MLE is given by
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Proof: see textbook Chapter 9.10.



Influence analysis for the LME model

Recall the LME model:

Yi=XiB+ Zibi + €
with b; ~ N(0,0%2D) and €; ~ N(0,0%I).
The MLE of 3 is given by

B=H"s,
where

N N
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Influence analysis for the LME model

The leverage matrix for the LME model is defined as

_ 9y

P =
0y;

Then we have
P =X,H'X]Vv!

and we can verify that
tr(P;) = m.



Influence analysis for the LME model

The influence of the response variable on the MLE is

B xTv
Y
The influence of the covariate on the MLE is given by
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where E;j;; is an n; x m matrix with only (j, k)-th element equal to 1.



Influence analysis for the LME model

Now we consider removing the i-th cluster from the dataset. The leave-one-out
estimator is given by

By = [H — XV X s — X[V ly,)
=B8-H 'X/V'I-P) (yi — %)

Therefore, we can define the generalized Cook’s distance for LME as

(yi—9:) (I -P)'VI'XH' X[ VI - P) ' (y; — §i)



