
STAT 574 Linear and Nonlinear Mixed Models

Lecture 10: Diagnoses and Influence Analysis

Chencheng Cai

Washington State University



Influence analysis

I Influence analysis is a set of techniques used to identify and assess the impact of
individual data points on the overall model fit and parameter estimates.

I In this lecture, we consider the influence analysis as a sensitivity analysis of the
model fit to the data.

I Data influence: the sensitivity of the model to a infinitesimal purturbation in the
data.

I Model influence: the sensitivity of the model to the assumptions.



Linear Regression Model

Consider a linear regression model:

yi = βTxi + εi ∀i.

The OLS estimator of β is given by

β̂ = (XTX)−1XTy =

(∑
i

xix
T
i

)−1∑
i

xiyi,

where X is the design matrix and y is the response vector.



Leverage

The leverage of the i-th observation is defined as the i-th diagonal element of the hat
matrix

H = X(XTX)−1XT .

That is
hi = (H)ii = xTi (XTX)−1xi.



Leverage

The sum of the leverages is equal to the number of parameters in the model:

n∑
i=1

hi = tr(H)

= tr(X(XTX)−1XT )

= tr((XTX)−1XTX)

= tr(I)

= m,

where m is the number of parameters in the model.

I Observations with high leverage are called influential observations.

I It measures how the predicted value is influenced by the i-th observation.



Leave-one-out

Another measure of influence is to check the change in the estimates of the parameters
when the i-th observation is removed from the data set.
The estimated parameter β̂(i) when the i-th observation is removed is given by

β̂(i) = (XT
(i)X(i))

−1XT
(i)y(i),

where X(i) and y(i) are the design matrix and response vector with the i-th
observation removed.



Leave-one-out
We notice that

(XT
(i)X(i))

−1 = (XTX − xixTi )−1 = (XTX)−1 +
(XTX)−1(xix

T
i )(XTX)−1

1− xTi (XTX)−1xi

Then

β̂(i) =
(
XTX − xixTi

)−1
(XTy − xiyi)

=
[
(XTX)−1 + (1− hi)−1(XTX)−1xix

T
i (XTX)−1

]
(XTy − xiyi)

= β̂ + (1− hi)−1(XTX)−1xix
T
i (XTX)−1XTy − (XTX)−1xiyi

− (1− hi)−1(XTX)−1xix
T
i (XTX)−1xiyi

= β̂ + (1− hi)−1(XTX)−1xiŷi − (XTX)−1xiyi −
hi

1− hi
(XTX)−1xiyi

= β̂ − yi − ŷi
1− hi

(XTX)−1xi.



Cook’s distance

The confidence region for the estimator β̂ is given by{
β : (β − β̂)T (XTX)−1(β − β̂) ≤ ms2Fα,m,n−m

}
The Cook’s distance is defined as

Di =
1

ms2
(β̂(i) − β̂)T (XTX)−1(β̂(i) − β̂)

By previous result, we have

Di =
(yi − ŷi)2

ms2

hi
(1− hi)2

Large values of Di indicate that the i-th observation has a large influence on the fitted
model.



Infinitesimal Influence (I-influence)

I D: data vector including all the observed values.

I t(D): a statistic of interest.

I The infinitesimal data influence is

lim
∆D→0

t(D + ∆Dei)− t(D)

∆D
=
∂t(D)

∂Di



Infinitesimal Influence (I-influence)

I Let `(θ) be the log-likelihood function of the model.

I Consider a more general model `(θ | ω) such that ω = 0 corresponds to the
model of interest.

I The infinitesimal model influence is defined as

∂t

∂ω

∣∣∣∣
ω=0



Influence of the Dependent Variable

We consider the influence of yi on the estimated parameters β̂.

I The OLS solution is

β̂ = (XTX)−1XTy = (XTX)−1
∑
i

xiyi.

I The influence of yi on β̂ is given by

∂β̂

∂yi
= (XTX)−1xi.

I Two possibilities that the size of the influence is large:
I |xi| is large: the i-th observation is far from the center of the data.
I The direction of xi is close to the direction of the eigenvector of XTX

corresponding to the smallest eigenvalue.



Influence of the Continuous Explanatory Variable

In particular, we are interested in
∂β̂

∂xik
,

where xik is the k-th element of xi.
Use matrix calculus, we have (by considering xi as the only variable)

dβ̂ = (XTX)−1d(XTy) +
(
d(XTX)−1

)
(XTy)

= (XTX)−1yidxi − (XTX)−1(xidx
T
i + (dxi)x

T
i )(XTX)−1(XTy)

= (XTX)−1yidxi − (XTX)−1xi(dxi)
T β̂ − (XTX)−1(dxi)ŷi

= (XTX)−1(yi − ŷi)dxi − (XTX)−1xiβ̂
Tdxi.

Therefore,
∂β̂

∂xi
= (XTX)−1

(
(yi − ŷi)I − xiβ̂T

)



Influence of the Continuous Explanatory Variable

Now we have
∂β̂

∂xik
= (XTX)−1

(
(yi − ŷi)ek − β̂kxi

)
I First component: normalized residual.

I Second component: the influence through the dependent variable.

It is also connected to Cook’s local influence, which is measured by

local influence of xik on β̂k = yi − ŷi − β̂kqi

where qi is the residual of the regression of x(k) on the other variables.



Influence of the Binary Explanatory Variable

Now we assume xik is a binary variable.

I A binary variable can be misclassified.

I We assume xik is an observation for the true binary variable zik such that
miscalssification occurs with probability qi.

I The true model should be

E(yi | zik) = α+ βkzik

I But now
E(yi | xik) = α+ βk(xik + (1− 2xik)qi)

I The influence of the misclassification is given by

∂β̂

∂qi

∣∣∣∣
qi=0

= (1− 2xik)(X
TX)−1

(
(yi − ŷi)ei − β̂kxi

)



Influence on the Predicted Value

The predicted value is connected to the estimated parameters by

ŷi = β̂Txi.

The influence can be transferred to the influence on the predicted value. That is

∂ŷi
∂xik

=
∂ŷi

∂β̂

∂β̂

∂xik
+

∂ŷi
∂xik

∣∣∣∣
β̂

= xTi (XTX)−1
(

(yi − ŷi)ek − β̂kxi
)

+ β̂k

= xTi (XTx)−1ek(yi − ŷi) + (1− hi)β̂k.



Influence on Regression Characteristics

Y-influence on

I Coefficient of determination R2:

∂R2

∂yi
=

2

SST

[
(1−R2)(yi − ȳ)− (yi − ŷi)

]
I t-statistics with t = s−1D−1/2β̂ where D = diag((XTX)−1):

∂t

∂yi
= s−1D−1/2(XTX)−1xi −

yi − ŷi
RSS

ti



Nonlinear Regression Models

Consider the nonlinear regression model:

yi = fi(β,xi) + εi

The LS estimator (LSE) of β is given by

β̂ = arg min
β

∑
i

(yi − fi(β,xi))2.

The estimating equation is given by∑
i

(yi − fi(β,xi))
∂fi(β,xi)

∂β
= 0.



Influence of the dependent variable on the LSE
The influence of yi on the LSE β̂ is

∂β̂

∂yi

Taking partial derivative of the estimating equation w.r.t. yi, we have

∑
j

δij −(∂fj(β̂,xj)
∂β̂

)T
∂β̂

∂yi

 ∂fj(β̂,xj)

∂β̂
+
∑
j

(yj−fj(β̂,xj))
∂2fj(β̂,xj)

∂β̂2

∂β̂

∂yi
= 0

This gives
∂β̂

∂yi
= H−1∂fi(β̂,xi)

∂β̂
,

with

H =

n∑
j=1

∂fj(β̂,xj)
∂β̂

(
∂fj(β̂,xj)

∂β̂

)T
− (yj − fj(β̂,xj))

∂2fj(β̂,xj)

∂β̂2





Influence of the explanatory variable on the LSE

We can follow the same procedure to get

∂β̂

∂xi
= H−1

(yi − ŷi)
∂2fi(β̂,xi)

∂β̂∂xi
− ∂fi(β̂,xi)

∂β̂

(
∂fi(β̂,xi)

∂xi

)T



Influence on the predicted value

Let f(β̂) = (f1(β̂,x1), f2(β̂,x2), · · · , fn(β̂,xn))T be the vector of predicted values.
The influence of yi on the predicted value is given by

∂f(β̂)

∂yi
=
∂f(β̂)

∂β̂

∂β̂

∂yi
= GH−1∂fi(β̂,xi)

∂β̂

where

G =
∂f(β̂)

∂β̂

This can be generalized to
∂f(β̂)

∂y
= GH−1GT ,

which is called the Jacobian leverage.



Logistic Regression

Consider the logistic regression model:

P (yi = 1) =
eβ

Txi

1 + eβTxi

For logistic regressions, we use MLE.
The log-likelihood function is given by

`(β) =

n∑
i=1

[
yiβ

Txi − log(1 + eβ
Txi)

]
The score function is given by

∂`(β)

∂β
=

n∑
i=1

yixi −
n∑
i=1

eβ
Txi

1 + eβTxi
xi =

n∑
i=1

1

1 + eβTxi
xi −

n∑
i=1

(1− yi)xi



Influence of the covariate on the MLE

Take the partial derivative of the score function w.r.t. xi, we have

−(1− yi)I +
1

1 + eβ̂Txi

I − eβ̂
Txi

(1 + eβ̂Txi)2
β̂xTi −

∑
j

eβ̂
Txj

(1 + eβ̂
Txj )2

∂β̂

∂xi
xjx

T
j = 0

This gives the influence of the covariate on the MLE:

∂β̂

∂xi
=

[
(yi − p̂i) I −

eβ̂
Txi

(1 + eβ̂Txi)2
β̂xTi

]
H−1,

where

H =

n∑
j=1

eβ̂
Txj

(1 + eβ̂
Txj )2

xjx
T
j , p̂i =

eβ̂
Txi

1 + eβ̂Txi



Influence on the predicted probability

The predicted probability is given by

p̂i =
eβ̂

Txi

1 + eβ̂Txi

The influence of xi on the predicted probability is given by the chain rule:

∂p̂i
∂xi

=
∂p̂i

∂β̂

∂β̂

∂xi
+
∂p̂i
∂xi

∣∣∣∣
β̂

=
eβ̂

Txi

(1 + eβ̂Txi)2

[[
(yi − p̂i) I −

eβ̂
Txi

(1 + eβ̂Txi)2
β̂xTi

]
H−1xi + β̂

]



Influence of measurement error

Now we consider the assumption that the covariate xi are fixed and known.
We consider a broader model with measurement error in the covariate such that

xi = zi + σsi,

where zi is the designed covariate, si is the standardized measurement error, and σ is
the standard deviation of the measurement error.
The model is given by

P (yi = 1) = H(γTui + τxi)

for some probability function H.
The observed model is

P (yi = 1) = Es[H(γTui + τzi + τσs)]

The parameters is β = (γ, τ)T .



Influence of measurement error

The influence of the measurement error on the MLE is given by

∂β̂

∂σ2

∣∣∣∣
σ2=0

≈ − 1

τ2
H−1

(
n∑
i=1

H ′′i H
′
i

Hi(1−Hi)

[
ui
zi

])

with

H =

n∑
i=1

H ′22
Hi(1−Hi)

[
ui
zi

] [
ui
zi

]T
Proof: see textbook Chapter 9.10.



Influence analysis for the LME model

Recall the LME model:
yi = Xiβ +Zibi + εi

with bi ∼ N(0, σ2D) and εi ∼ N(0, σ2I).
The MLE of β is given by

β̂ = H−1s,

where

H =

N∑
i=1

XT
i V

−1
i Xi, s =

N∑
i=1

XT
i V

−1
i yi, Vi = I +ZiD̂Z

T
i



Influence analysis for the LME model

The leverage matrix for the LME model is defined as

Pi =
∂ŷi
∂yi

with ŷi = Xiβ̂.
Then we have

Pi = XiH
−1XT

i V
−1
i

and we can verify that
tr(Pi) = m.



Influence analysis for the LME model

The influence of the response variable on the MLE is

∂β̂

∂yi
= H−1XT

i V
−1
i

The influence of the covariate on the MLE is given by

∂β̂

∂xijk
= H−1

(
ET
ijkV

−1
i (yi − ŷi)−XT

i V
−1
i Eijkβ̂

)
where Eijk is an ni ×m matrix with only (j, k)-th element equal to 1.



Influence analysis for the LME model

Now we consider removing the i-th cluster from the dataset. The leave-one-out
estimator is given by

β̂(i) = [H −XT
i V

−1
i Xi]

−1[s−XT
i V

−1
i yi]

= β −H−1XT
i V

−1
i (I − Pi)−1(yi − ŷi)

Therefore, we can define the generalized Cook’s distance for LME as

Di =
1

mσ̂2
(yi − ŷi)T (I − Pi)−1V −1

i XiH
−1XT

i V
−1
i (I − Pi)−1(yi − ŷi)


