STAT 574 Linear and Nonlinear Mixed Models

Lecture 1: Review

Chencheng Cai

Washington State University

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Linear Algebra

イロトメタトメミドメミド ミニの女色

Vector Space (over real field)

A set V is a **vector space** if the followings hold for any $u, v, w \in V$ and $a, b \in \mathbb{R}$

- \blacktriangleright (closed under addition) $u + v \in V$.
- ► (closed under scalar multiplication) $au \in V$.
- \blacktriangleright (abelian group under addition)
	- **I** (associativity) $(u + v) + w = u + (v + w)$
	- **I** (commutativity) $u + v = v + u$
	- \blacktriangleright (existence of identity) \exists 0 ∈ $V, v + 0 = v$ for all $v \in V$.
	- ► (existence of inverse) For any $u \in V$, there exists $-u \in V$ such that $u + (-u) = 0$.

KORK EXTERNE DRAM

- \blacktriangleright (scalar multiplication)
	- \bullet $a(bu) = (ab)u$ \blacktriangleright 1u = u
- \blacktriangleright (linear space)

$$
\blacktriangleright a(\mathbf{u}+\mathbf{v}) = a\mathbf{u} + a\mathbf{v}
$$

 $(a + b)u = au + bu$

linear indpendence

 $\blacktriangleright u_1, \ldots, u_n \in V$ are linearly independent if the only solution to

$$
a_1\mathbf{u}_1+a_2\mathbf{u}_2+\cdots+a_n\mathbf{u}_n=\mathbf{0}
$$

KORK ERKER ADAM ADA

is $a_1 = a_2 = \cdots = a_n = 0$. Otherwise, they are **linearly dependent**.

- $\blacktriangleright \{u_1, u_2, \ldots, u_n\} \subseteq S$ is called the **maximal linearly-independent subset** of $S \subseteq V$ if for any $v \in S$, $\{u_1, u_2, \ldots, u_n, v\}$ are linearly dependent.
- **IF** The cardinality (size) of the maximal linearly-independent subset of $S \subseteq V$ is called the rank of S .

subspace and spanning

- \blacktriangleright $S \subseteq V$ is called a (linear) subspace of V if S inheritates the addition and the scalar multiplication from V and S itself is a vector space.
- \blacktriangleright The (linear) span of $\{u_1, \ldots, u_n\}$ is the smallest subspace of V that contains $\{u_1, \ldots, u_n\}.$

basis and dimension

- $\blacktriangleright \{u_1, \ldots, u_n\}$ is a basis of V if its elements are linearly independent and span the space V .
- \blacktriangleright The cardinality of any basis of V is the **dimension** of V.
- In Let $\{u_1, \ldots, u_n\}$ be a basis of V. For any $v \in V$, the decomposition

$$
\boldsymbol{v} = a_1 \boldsymbol{u}_1 + a_2 \boldsymbol{u}_2 + \cdots + a_n \boldsymbol{u}_n
$$

is unique, and the coefficients a_1, \ldots, a_n are called the **coordinates** of v on the basis.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright Example: Euclidean space.

Inner Product Space

vector space $+$ inner product $=$ inner product space

\n- inner product
$$
\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}
$$
.
\n- $\langle u, u \rangle \geq 0$ and $\langle u, u \rangle = 0$ if and only if $u = 0$
\n- $\langle u, v \rangle = \langle v, u \rangle$
\n- $\langle au, v \rangle = a \langle u, v \rangle$
\n- $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$
\n

 \triangleright inner product space is a normed space equipped with norm

$$
\|\bm{u}\|_{\langle\cdot,\cdot\rangle}=\sqrt{\langle\bm{u},\bm{u}\rangle}
$$

KORK (DRK ERK ERK) ER 1990

Orthogonality

- $u \neq 0$ and $v \neq 0$ are othogonal if and only if $\langle u, v \rangle = 0$.
- \triangleright A basis is **orthogonal** if its elements are pair-wise orthogonal.
- An orthogonal basis is **orthonormal** if any of the elements has norm 1.
- A mapping $P: V \to U \subset V$ is an **orthogonal projection** if and only if

KORK ERKER ADAM ADA

- \blacktriangleright $Pu = u$ for any $u \in U$.
- \blacktriangleright $\langle Pu, u Pu \rangle = 0$ for any $u \in V$.

Matrix

 \blacktriangleright Matrix is an array of real numbers:

$$
\boldsymbol{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}
$$

 \blacktriangleright Matrix is an aggregation of Euclidean vectors: $(\boldsymbol{u}_j \in \mathbb{R}^m)$

$$
\bm{A} = \begin{bmatrix} \bm{u}_1 & \bm{u}_2 & \dots & \bm{u}_n \end{bmatrix}
$$

 \blacktriangleright Matrix is a linear mapping:

$$
\boldsymbol{A} : \mathbb{R}^m \to \mathbb{R}^n, (x_1, \dots, x_m) \mapsto \left(\sum_{j=1}^n a_{1j} x_j, \dots, \sum_{j=1}^n a_{nj} x_j \right)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

We will skip..

 \blacktriangleright Basic operations of matrix.

 \triangleright Special matrices (zero, identity, diagonal, etc..)

K ロ ▶ K 레 ▶ K 호 K K 환 K (호 K Y Q Q Q Q

 \blacktriangleright Determinant.

Rank

If $\bm{A}=[\bm{u}_1,\ldots,\bm{u}_n]=[{\bm{v}}_1,\ldots,{\bm{v}}_m]^T$, where \bm{u}_j 's are columns and \bm{v}_i 's are rows of \bm{A} , then

 \blacktriangleright span (u_1, \ldots, u_n) is the column space or the manifold of A, denoted by $\text{col}(A)$. \blacktriangleright rank:

$$
\text{rank}(\bm{A}):=\text{rank}(\bm{u}_1,\ldots,\bm{u}_n)=\text{rank}(\bm{v}_1,\ldots,\bm{v}_m)
$$

 \blacktriangleright rank is the dimension of the columns space.

$$
rank(\mathbf{A}) = dim(col(\mathbf{A})) = dim(col(\mathbf{A}^T)) \le m \wedge n
$$

KO K K Ø K K E K K E K V K K K K K K K K K

 \blacktriangleright Trace of a squared matrix is the sum of the elements on the diagnoal.

$$
\mathrm{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} A_{ii}
$$

 \triangleright Use trace to present sum of pairwise products of two matrices. Let $\boldsymbol{A},\boldsymbol{B}\in\mathbb{R}^{m\times n}.$ Then we have

$$
\text{tr}(\boldsymbol{A}^T\boldsymbol{B}) = \text{tr}(\boldsymbol{B}^T\boldsymbol{A}) = \sum_{i=1}^m \sum_{j=1}^n A_{ij}B_{ij}
$$

KORK (DRK ERK ERK) ER 1990

Moore-Penrose Inverse

$$
\blacktriangleright \text{ For } A \in \mathbb{R}^{m \times n}, \text{ a pseudo-inverse } A^+ \in \mathbb{R}^{n \times n} \text{ satisfies}
$$

$$
\blacktriangleright AA^+A=A
$$

$$
\blacktriangleright A^+AA^+=A^+
$$

 \blacktriangleright Both AA^+ and A^+A are symmetric.

For
$$
\mathbf{A} \in \mathbb{R}^{m \times n}
$$
 $(m > n)$, if rank $(\mathbf{A}) = n$, then

$$
\boldsymbol{A}^+ = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T.
$$

KOKKØKKEKKEK E DAG

Woodbury Identity

If A and C are invertible, and assuming all matrices are conformal, we have

$$
(\bm{A}+\bm{U}\bm{C}\bm{V})^{-1}=\bm{A}^{-1}-\bm{A}^{-1}\bm{U}(\bm{C}^{-1}+\bm{V}\bm{A}^{-1}\bm{U})^{-1}\bm{V}\bm{A}^{-1}
$$

Special case: $A = I$, $C = [1]$, $U = V^T = u$.

$$
(\boldsymbol{I} + \boldsymbol{u}\boldsymbol{u}^T)^{-1} = \boldsymbol{I} - \frac{\boldsymbol{u}\boldsymbol{u}^T}{1 + \|\boldsymbol{u}\|^2}
$$

 \blacktriangleright Special case: $U = C = I$.

$$
(\boldsymbol{A} + \boldsymbol{C})^{-1} = \boldsymbol{A}^{-1} - \boldsymbol{A}^{-1}(\boldsymbol{A}^{-1} + \boldsymbol{C}^{-1})^{-1}\boldsymbol{A}^{-1}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Eigenvalues and eigenvectors for symmetric matrices

Let A be an $n \times n$ symmetric matrix

- If $Au = \lambda u$, then λ is called an eigenvalue of A, and u is the eigenvector.
- \blacktriangleright A has n eigenvalues and eigenvectors (including zeros and duplicated eigenvalues).
- Let $\lambda_1 > \lambda_2 > \cdots \ge \lambda_n$ be the eigenvalues in descending order, and u_1, \ldots, u_n be the corresponding eigenvectors.
- \blacktriangleright If $\lambda_n > 0$, then $\bm A$ is positive-definite that $\bm w^T \bm A \bm w > 0$ for all $\bm w \in \mathbb R^n$ and $\bm w \ne \bm 0.$ If $\lambda > 0$, **A** is positive semi-definite.

KORK ERKER ADAM ADA

- A is singular if and only if $\lambda_n = 0$.
- \triangleright Rank of A equals the number of non-zero eigenvalues.

Eigenvalues and eigenvectors for symmetric matrices

 $\blacktriangleright u_1$ is the optimum to the optimization:

$$
\max_{\|\bm{w}\|=1} \ \bm{w}^T \bm{A} \bm{w}
$$

 $\blacktriangleright u_i$ $(i > 1)$ is the optimum to the optimization:

$$
\max_{\|\boldsymbol{w}\|=1,\boldsymbol{w}^T\boldsymbol{u}_j=0\text{ for }1\leq j
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Eigenvalues Decomposition

\n- We can write\n
$$
A = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^T
$$
\n
\n- Or\n
$$
A = UDU^T,
$$
\n where $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$ and $U = [\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n]$ is orthonormal.
\n

K ロ K K 레 K K B K K B K A G W K C K

Singular values and singular vectors for squared matrices

Let A be an $m \times n$ matrix with $m > n$.

- If $Au = sv$ and $A^T v = su$, then s is a singular value of A, and u and v are the right and left singular vectors.
- \blacktriangleright s^2 is an eigenvalue of $\mathbf{A}^T\mathbf{A}$ and \bm{u} is the eigenvector.
- \blacktriangleright s^2 is an eigenvalue of $\boldsymbol{A}\boldsymbol{A}^T$ and \boldsymbol{v} is the eigenvector.
- \blacktriangleright A has at most n non-zero singular values.
- In Let the singular values be $s_1 \geq s_1 \geq \cdots \geq s_n$, and the singular vectors be u_i and v_i for $i = 1, \ldots, n$.

KORK ERKER ADAM ADA

Singular values and singular vectors for squared matrices

 $\blacktriangleright u_1$ and v_1 are the optimum to the optimization:

$$
\max_{\|\boldsymbol{w}\|=1,\|\boldsymbol{z}\|=1} \ \boldsymbol{w}^T \boldsymbol{A} \boldsymbol{z}
$$

 $\blacktriangleright u_1$ is the optimum to the optimization:

$$
\max_{\|\bm{w}\|=1} \ \bm{w}^T \bm{A}^T \bm{A} \bm{w}
$$

 \triangleright v_1 is the optimum to the optimization:

$$
\max_{\|\bm{w}\|=1} \ \bm{w}^T \bm{A} \bm{A}^T \bm{w}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Singular Value Decomposition

 \blacktriangleright We can write

$$
\boldsymbol{A} = \sum_{i=1}^n s_i \boldsymbol{v}_i \boldsymbol{u}_i^T
$$

 \triangleright Or

$$
\boldsymbol{A} = \boldsymbol{V}\boldsymbol{D}\boldsymbol{U}^T,
$$

where $D = \text{diag}(s_1, \ldots, s_n)$, $V = [v_1, \cdots, v_n]$ and $U = [u_1, \cdots, u_n]$. Both U and V are orthonormal.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Other Decompositions

\blacktriangleright Cholesky Decompositin.

If A is symmetric positive definite, then

$$
\bm{A}=\bm{L}\bm{L}^T
$$

for some lower triangular matrix L .

▶ LU Decomposition.

If A is a square matrix, then

$$
\pmb{A}=\pmb{L}\pmb{U}^T
$$

for some lower triangular matrix L and some upper triangular matrix U .

▶ QR Decomposition.

If A is $m \times n$, then

$$
A=QR
$$

for some orthogonal $m \times m$ matrix Q and some upper triangular $m \times n$ matrix R.

Matrix Calculus

KOKK@KKEKKEK E 1990

Basic definitions

- **In** matrix calculus = multivariate calculus + assembling
- univariate scalar function: $f' = df/dx$
- \blacktriangleright multivariate scalar function:

$$
\nabla f = \partial f / \partial \boldsymbol{x} = (\partial f / \partial x_1, \partial f / \partial x_2, \partial f / \partial x_3, \dots, \partial f / \partial x_n)
$$

 \blacktriangleright univariate vector function:

$$
\boldsymbol{f}' = df/dx = (df_1/dx, df_2/dx, \dots, df_k/dx)^T
$$

 \blacktriangleright multivariate vector function:

$$
\nabla \mathbf{f} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_k}{\partial x_1} & \frac{\partial f_k}{\partial x_2} & \cdots & \frac{\partial f_k}{\partial x_n} \end{bmatrix}
$$

Basic definitions

 \blacktriangleright function is matrix-valued:

$$
\frac{d\boldsymbol{M}}{dx} = \begin{bmatrix} \frac{dM_{11}}{dx} & \frac{dM_{12}}{dx} & \cdots & \frac{dM_{1n}}{dx} \\ \frac{dM_{21}}{dx} & \frac{dM_{22}}{dx} & \cdots & \frac{dM_{2n}}{dx} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{dM_{m1}}{dx} & \frac{dM_{m2}}{dx} & \cdots & \frac{dM_{mn}}{dx} \end{bmatrix}
$$

 \blacktriangleright function of matrices:

$$
\frac{\partial f}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial f}{\partial X_{11}} & \frac{\partial f}{\partial X_{12}} & \cdots & \frac{\partial f}{\partial X_{1n}} \\ \frac{\partial f}{\partial X_{21}} & \frac{\partial f}{\partial X_{22}} & \cdots & \frac{\partial f}{\partial X_{2n}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f}{\partial X_{m1}} & \frac{\partial f}{\partial X_{m2}} & \cdots & \frac{\partial f}{\partial X_{mn}} \end{bmatrix}
$$

Differentiation

- univariate scalar function: $df = f'dx$
- \blacktriangleright multivariate scalar function:

$$
df = \nabla f d\boldsymbol{x}
$$

 \blacktriangleright univariate vector function:

$$
df = f'dx
$$

 \blacktriangleright multivariate vector function:

$$
df = \nabla f dx
$$

 \blacktriangleright matrix-valued function:

$$
d\boldsymbol{M} = \frac{d\boldsymbol{M}}{dx}dx
$$

 \blacktriangleright function of matrices:

$$
df = \text{tr}\left[\left(\frac{\partial f}{\partial \mathbf{X}}\right)^T d\mathbf{X}\right]
$$

Differentiation — expending to more components

$$
\blacktriangleright
$$
 univariate scalar function: $df = f'_x dx + f'_y dy$

 \blacktriangleright multivariate scalar function:

$$
df = \nabla_x f d\boldsymbol{x} + \nabla_y f d\boldsymbol{y}
$$

 \blacktriangleright univariate vector function:

$$
d\boldsymbol{f} = \boldsymbol{f}_x'dx + \boldsymbol{f}_y'dy
$$

 \blacktriangleright multivariate vector function:

$$
df = \nabla_x f dx + \nabla_y f dy
$$

 \blacktriangleright matrix-valued function:

$$
d\mathbf{M} = \frac{\partial \mathbf{M}}{\partial x} dx + \frac{\partial \mathbf{M}}{\partial y} dy
$$

 \blacktriangleright function of matrices:

$$
df = \operatorname{tr}\left[\left(\frac{\partial f}{\partial \mathbf{X}}\right)^T d\mathbf{X}\right] + \operatorname{tr}\left[\left(\frac{\partial f}{\partial \mathbf{Y}}\right)^T d\mathbf{Y}\right]
$$

Chain Rules

Iteratively replace differentiations.

 \blacktriangleright Differentiation for $f(\mathbf{X}(t),\mathbf{Y}(t))$:

$$
df = \operatorname{tr}\left[\left(\frac{\partial f}{\partial \mathbf{X}}\right)^T d\mathbf{X}\right] + \operatorname{tr}\left[\left(\frac{\partial f}{\partial \mathbf{Y}}\right)^T d\mathbf{Y}\right]
$$

$$
= \left\{\operatorname{tr}\left[\left(\frac{\partial f}{\partial \mathbf{X}}\right)^T \frac{d\mathbf{X}}{dt}\right] + \operatorname{tr}\left[\left(\frac{\partial f}{\partial \mathbf{Y}}\right)^T \frac{d\mathbf{Y}}{dt}\right]\right\} dt
$$

 \blacktriangleright Differentiation for $f(g(x, z))$:

$$
df = f'dg = f'(\nabla_x g dx + g'_z dz) = f'\nabla_x g dx + f'g'_z dz
$$

KOKK@KKEKKEK E 1990

Common Results

\n- \n
$$
\begin{aligned}\n &\nabla y = \mathbf{u}^T \mathbf{x}.\n \end{aligned}
$$
\n
\n- \n
$$
\begin{aligned}\n &\nabla y = \mathbf{u}^T \\
&\nabla y = \mathbf{x}^T \mathbf{A} + \mathbf{x}^T \mathbf{A}^T\n \end{aligned}
$$
\n
\n- \n
$$
\begin{aligned}\n &\nabla y = \mathbf{x}^T \mathbf{A} + \mathbf{x}^T \mathbf{A}^T\n \end{aligned}
$$
\n
\n- \n
$$
\begin{aligned}\n &\nabla y = \mathbf{x}^T \mathbf{A} + \mathbf{x}^T \mathbf{A}^T\n \end{aligned}
$$
\n
\n- \n
$$
\begin{aligned}\n &\nabla y = 2\mathbf{x}^T \mathbf{A} \\
&\nabla y = 2\mathbf{x}^T \mathbf{A}\n \end{aligned}
$$
\n
\n- \n
$$
\begin{aligned}\n &\nabla y = 2\mathbf{x}^T \mathbf{A}.\n \end{aligned}
$$
\n
\n

\n- Let
$$
y = ||x||
$$
.
\n- Let $y = Ax$.
\n

 $\nabla y = A$

 $\nabla y = \frac{\boldsymbol{x}^T}{\|}$

 $\|x\|$

イロトメタトメミドメミド ミニの女色

Common Results

► Let
$$
y = tr(A^T X)
$$
.
\n
\n► Let $y = tr(X)$.
\n
\n► Let $y = u^T X v$.
\n
\n► Let $y = |X|$.
\n
\n
\n $\frac{\partial y}{\partial X} = I$
\n
\n
\n $\frac{\partial y}{\partial X} = uv^T$
\n
\n► Let $y = |X|$.
\n
\n $\frac{\partial y}{\partial X} = uv^T$
\n
\n $\frac{\partial y}{\partial X} = |X|X^{-1}$

Kロト K個 K K ミト K ミト 「 ミー の R (^

Multivariate matrix differentiation

 \blacktriangleright We know that

$$
d(\boldsymbol{XY}) = (d\boldsymbol{X})\boldsymbol{Y} + \boldsymbol{X}d\boldsymbol{Y}
$$

 \blacktriangleright Then

$$
0 = (dX)X^{-1} + Xd(X^{-1})
$$

 \blacktriangleright Therefore

$$
d(\mathbf{X}^{-1}) = -\mathbf{X}^{-1}(d\mathbf{X})\mathbf{X}^{-1}
$$

Example:

Let $y = \boldsymbol{u}^T(\boldsymbol{I} + x\boldsymbol{D})^{-1}\boldsymbol{v}$.

$$
dy = \mathbf{u}^T d(\mathbf{I} + x\mathbf{D})^{-1} \mathbf{v}
$$

= $-\mathbf{u}^T (\mathbf{I} + x\mathbf{D})^{-1} d(\mathbf{I} + x\mathbf{D}) (\mathbf{I} + x\mathbf{D})^{-1} \mathbf{v}$
= $-\mathbf{u}^T (\mathbf{I} + x\mathbf{D})^{-1} \mathbf{D} (\mathbf{I} + x\mathbf{D})^{-1} \mathbf{v} dx$

Kロトメ部トメミトメミト ミニのQC

Linear Regression

イロトメタトメミドメミド ミニの女色

Linear Regression Model

\blacktriangleright Coordinate-wise

$$
y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i \quad \text{for } i = 1, \dots, n
$$

 \blacktriangleright Vectorize independent variables

$$
y_i = \boldsymbol{\beta}^T \boldsymbol{x}_i + \epsilon_i \quad \text{for } i = 1, \dots, n
$$

 \blacktriangleright Vectorize observations

$$
\boldsymbol{y} = \beta_0 \boldsymbol{1} + \beta_1 \boldsymbol{x}^{(1)} + \beta_2 \boldsymbol{x}^{(2)} + \cdots + \beta_p \boldsymbol{x}^{(p)} + \boldsymbol{\epsilon}
$$

$$
\bm{y} = \bm{X}\bm{\beta} + \bm{\epsilon}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Notation

 \triangleright x_{ij} : value of *j*-th indepednent variable of unit *i*. $\blacktriangleright \bm{x}_i := (1, x_{i1}, x_{i2}, \ldots, x_{ip})^T$: vector of indepednent variables of unit i . $\blacktriangleright \ \bm{x}^{(j)} := (x_{1j}, x_{2j}, \ldots, x_{nj})^T$: vector of j-th independent variable from all units. $\blacktriangleright\ \boldsymbol{X}:=[\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n]^T=[\boldsymbol{1}, \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(p)}]$: design matrix. \blacktriangleright $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)^T$: coefficient vector. $\blacktriangleright \epsilon = (\epsilon_1, \epsilon_2, \epsilon_n)^T$: noise/error vector.

KORKA SERKER YOUR

Some useful identities:

$$
\blacktriangleright \mathbf{X}^T \mathbf{X} = \sum_{i=1}^n x_i x_i^T
$$

\n
$$
\blacktriangleright \left[\mathbf{X}^T \mathbf{X} \right]_{jk} = \left[\mathbf{x}^{(j-1)} \right]^T \mathbf{x}^{(k-1)} \text{ by letting } \mathbf{X}^{(0)} = \mathbf{1}.
$$

Assumptions (LINE)

- \triangleright Linear relationship between the mean response and the independent variables. diagnostics: scatter plot, partial regression plot.
- Independent observations. The errors ϵ_i 's are independent.
- \blacktriangleright Normally distributed. The errors ϵ_i 's are normally distributed. diagnostics: QQ plot for residuals.
- **E**qual variances. The errors ϵ_i 's have equal variances. diagnostics: residual plot.

In summary:

$$
\boldsymbol{y}\sim \mathcal{N}_n(\boldsymbol{X}\boldsymbol{\beta},\sigma^2\boldsymbol{I}_n)
$$

KORK ERKER ADAM ADA

Least Squares Estimation (LSE)

$$
\min_{\boldsymbol{\beta}} \; \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}\|^2
$$

- \triangleright objective function: residual sum-of-squares.
- Solution: $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$.
- requirement: $X^T X$ invertible.
- \blacktriangleright fitted value: $\hat{y} = X\hat{\beta} = X(X^TX)^{-1}X^Ty =: Hy$ where $H = X(X^TX)^{-1}X^T$ is called hat matrix.

$$
\blacktriangleright \text{ residual: } \hat{\epsilon} = y - \hat{y} = (I - H)y
$$

ightharpoonup in the union of variance: $\hat{s}^2 = ||\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}||^2 / (n - (p+1))$

KORKARYKERKER OQO

Maximum Likelihood Estimation (MLE)

$$
\max\limits_{\boldsymbol{\beta}, \sigma^2} \; \frac{1}{(2\pi)^{n/2} \sqrt{|\sigma^2\boldsymbol{I}|}} \exp\left\{-\frac{1}{2} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T (\sigma^2\boldsymbol{I})^{-1} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})\right\}
$$

 \blacktriangleright solution:

$$
\hat{\beta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}
$$

$$
\hat{\sigma}^2 = \frac{1}{n} ||\boldsymbol{y} - \boldsymbol{X}\hat{\beta}||^2
$$

K □ K K 라 K K 링 K K 링 K Y G V G Y K G W G Y C Y

requirement: $X^T X$ invertible.

Distributions

$$
\boldsymbol{y}\sim \mathcal{N}_n(\boldsymbol{X}\boldsymbol{\beta},\sigma^2\boldsymbol{I})
$$

\n- ▶
$$
\hat{\beta} = (X^T X)^{-1} X^T y \sim \mathcal{N}(\beta, \sigma^2 (X^T X)^{-1})
$$
\n- ▶ $\hat{y} = X \hat{\beta} \sim \mathcal{N}(X\beta, \sigma^2 H)$
\n- ▶ $\hat{\epsilon} = y - \hat{y} \sim \mathcal{N}(0, \sigma^2 (I - H))$
\n- ▶ $\|\hat{\epsilon}\|^2 \sim \sigma^2 \chi_k^2$ where $k = \text{rank}(I - H) = n - p - 1$.
\n- ▶ Fact: if $x \sim \mathcal{N}(0, \Sigma)$ and $\Sigma^2 = \Sigma$, then $||x||^2 \sim \chi_k^2$ where $k = \text{rank}(\Sigma)$.
\n

K ロ K K 레 K K B K K B K A G W K C K

Inder the conditions of linear regression model, $\hat{\beta}$ is the best linear unbiased estimator (BLUE) for β .

$$
\blacktriangleright
$$
 That is if $\tilde{\beta} = w^T y$ for some w and $\mathbb{E}[\tilde{\beta}] = \beta$, then

$$
\text{Var}(\tilde{\boldsymbol{\beta}}) \succeq \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}.
$$

Multicollinearity

 \blacktriangleright Multicollinearity: near-perfect linear dependence among the predictors.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- \blacktriangleright Quantification: variance-inflation-factor (VIF).
- \blacktriangleright The issue:
	- \blacktriangleright $\boldsymbol{X}^T \boldsymbol{X}$ is close to be singular.
	- large variance for $\hat{\beta}$.
- \blacktriangleright Solution:
	- \blacktriangleright Variable Selection: best subset, stepwise selection.
	- **Penalized Linear Regression: ridge, LASSO.**

Kロト K個 K K ミト K ミト 「 ミー の R (^