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Linear Algebra



Vector Space (over real field)

A set V is a vector space if the followings hold for any u,v,w ∈ V and a, b ∈ R
I (closed under addition) u+ v ∈ V .

I (closed under scalar multiplication) au ∈ V .
I (abelian group under addition)

I (associativity) (u+ v) +w = u+ (v +w)
I (commutativity) u+ v = v + u
I (existence of identity) ∃ 0 ∈ V,v + 0 = v for all v ∈ V .
I (existence of inverse) For any u ∈ V , there exists −u ∈ V such that u+ (−u) = 0.

I (scalar multiplication)
I a(bu) = (ab)u
I 1u = u

I (linear space)
I a(u+ v) = au+ av
I (a+ b)u = au+ bu



linear indpendence

I u1, . . . ,un ∈ V are linearly independent if the only solution to

a1u1 + a2u2 + · · ·+ anun = 0

is a1 = a2 = · · · = an = 0. Otherwise, they are linearly dependent.

I {u1,u2, . . . ,un} ⊆ S is called the maximal linearly-independent subset of
S ⊆ V if for any v ∈ S, {u1,u2, . . . ,un,v} are linearly dependent.

I The cardinality (size) of the maximal linearly-independent subset of S ⊆ V is
called the rank of S.



subspace and spanning

I S ⊆ V is called a (linear) subspace of V if S inheritates the addition and the
scalar multiplication from V and S itself is a vector space.

I The (linear) span of {u1, . . . ,un} is the smallest subspace of V that contains
{u1, . . . ,un}.



basis and dimension

I {u1, . . . ,un} is a basis of V if its elements are linearly independent and span the
space V .

I The cardinality of any basis of V is the dimension of V .

I Let {u1, . . . ,un} be a basis of V . For any v ∈ V , the decomposition

v = a1u1 + a2u2 + · · ·+ anun

is unique, and the coefficients a1, . . . , an are called the coordinates of v on the
basis.

I Example: Euclidean space.



Inner Product Space

vector space + inner product = inner product space

I inner product 〈·, ·〉 : V × V → R.
I 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 if and only if u = 0
I 〈u,v〉 = 〈v,u〉
I 〈au,v〉 = a〈u,v〉
I 〈u,v +w〉 = 〈u,v〉+ 〈u,w〉

I inner product space is a normed space equipped with norm

‖u‖〈·,·〉 =
√
〈u,u〉



Orthogonality

I u 6= 0 and v 6= 0 are othogonal if and only if 〈u,v〉 = 0.

I A basis is orthogonal if its elements are pair-wise orthogonal.

I An orthogonal basis is orthonormal if any of the elements has norm 1.
I A mapping P : V → U ⊂ V is an orthogonal projection if and only if

I Pu = u for any u ∈ U .
I 〈Pu,u− Pu〉 = 0 for any u ∈ V .



Matrix

I Matrix is an array of real numbers:

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n


I Matrix is an aggregation of Euclidean vectors: (uj ∈ Rm)

A =
[
u1 u2 . . . un

]
I Matrix is a linear mapping:

A : Rm → Rn, (x1, . . . , xm) 7→

 n∑
j=1

a1jxj , . . . ,

n∑
j=1

anjxj





We will skip..

I Basic operations of matrix.

I Special matrices (zero, identity, diagonal, etc..)

I Determinant.



Rank

If A = [u1, . . . ,un] = [v1, . . . ,vm]
T , where uj ’s are columns and vi’s are rows of A,

then

I span(u1, . . . ,un) is the column space or the manifold of A, denoted by col(A).

I rank:
rank(A) := rank(u1, . . . ,un) = rank(v1, . . . ,vm)

I rank is the dimension of the columns space.

rank(A) = dim(col(A)) = dim(col(AT )) ≤ m ∧ n



Trace

I Trace of a squared matrix is the sum of the elements on the diagnoal.

tr(A) =

n∑
i=1

Aii

I Use trace to present sum of pairwise products of two matrices. Let
A,B ∈ Rm×n. Then we have

tr(ATB) = tr(BTA) =

m∑
i=1

n∑
j=1

AijBij



Moore-Penrose Inverse

I For A ∈ Rm×n, a psudo-inverse A+ ∈ Rn×n satisfies
I AA+A = A
I A+AA+ = A+

I Both AA+ and A+A are symmetric.

I For A ∈ Rm×n (m > n), if rank(A) = n, then

A+ = (ATA)−1AT .



Woodbury Identity

I If A and C are invertible, and assuming all matrices are conformal, we have

(A+UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

I Special case: A = I, C = [1], U = V T = u.

(I + uuT )−1 = I − uuT

1 + ‖u‖2

I Special case: U = C = I.

(A+C)−1 = A−1 −A−1(A−1 +C−1)−1A−1



Eigenvalues and eigenvectors for symmetric matrices

Let A be an n× n symmetric matrix

I If Au = λu, then λ is called an eigenvalue of A, and u is the eigenvector.

I A has n eigenvalues and eigenvectors (including zeros and duplicated eigenvalues).

I Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues in descending order, and u1, . . . ,un
be the corresponding eigenvectors.

I If λn > 0, then A is positive-definite that wTAw > 0 for all w ∈ Rn and w 6= 0.
If λ ≥ 0, A is positive semi-definite.

I A is singular if and only if λn = 0.

I Rank of A equals the number of non-zero eigenvalues.



Eigenvalues and eigenvectors for symmetric matrices

I u1 is the optimum to the optimization:

max
‖w‖=1

wTAw

I ui (i > 1) is the optimum to the optimization:

max
‖w‖=1,wTuj=0 for 1≤j<i

wTAw



Eigenvalues Decomposition

I We can write

A =

n∑
i=1

λiuiu
T
i

I Or
A = UDUT ,

where D = diag(λ1, . . . , λn) and U = [u1,u2, . . . ,un] is orthonormal.



Singular values and singular vectors for squared matrices

Let A be an m× n matrix with m > n.

I If Au = sv and ATv = su, then s is a singular value of A, and u and v are the
right and left singular vectors.

I s2 is an eigenvalue of ATA and u is the eigenvector.

I s2 is an eigenvalue of AAT and v is the eigenvector.

I A has at most n non-zero singular values.

I Let the singular values be s1 ≥ s1 ≥ · · · ≥ sn, and the singular vectors be ui and
vi for i = 1, . . . , n.



Singular values and singular vectors for squared matrices

I u1 and v1 are the optimum to the optimization:

max
‖w‖=1,‖z‖=1

wTAz

I u1 is the optimum to the optimization:

max
‖w‖=1

wTATAw

I v1 is the optimum to the optimization:

max
‖w‖=1

wTAATw



Singular Value Decomposition

I We can write

A =

n∑
i=1

siviu
T
i

I Or
A = V DUT ,

where D = diag(s1, . . . , sn), V = [v1, · · · ,vn] and U = [u1, · · · ,un]. Both U
and V are orthonormal.



Other Decompositions

I Cholesky Decompositin.
If A is symmetric positive definite, then

A = LLT

for some lower triangular matrix L.

I LU Decomposition.
If A is a square matrix, then

A = LUT

for some lower triangular matrix L and some upper triangular matrix U .

I QR Decomposition.
If A is m× n, then

A = QR

for some orthogonal m×m matrix Q and some upper triangular m× n matrix R.



Matrix Calculus



Basic definitions
I matrix calculus = multivariate calculus + assembling

I univariate scalar function: f ′ = df/dx

I multivariate scalar function:

∇f = ∂f/∂x = (∂f/∂x1, ∂f/∂x2, ∂f/∂x3, . . . , ∂f/∂xn)

I univariate vector function:

f ′ = df/dx = (df1/dx, df2/dx, . . . , dfk/dx)
T

I multivariate vector function:

∇f =
∂f

∂x
=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

...
∂fk
∂x1

∂fk
∂x2

· · · ∂fk
∂xn





Basic definitions

I function is matrix-valued:

dM

dx
=


dM11
dx

dM12
dx · · · dM1n

dx
dM21
dx

dM22
dx · · · dM2n

dx
...

...
...

dMm1
dx

dMm2
dx · · · dMmn

dx


I function of matrices:

∂f

∂X
=


∂f
∂X11

∂f
∂X12

· · · ∂f
∂X1n

∂f
∂X21

∂f
∂X22

· · · ∂f
∂X2n

...
...

...
∂f

∂Xm1

∂f
∂Xm2

· · · ∂f
∂Xmn





Differentiation

I univariate scalar function: df = f ′dx

I multivariate scalar function:
df = ∇fdx

I univariate vector function:
df = f ′dx

I multivariate vector function:
df = ∇fdx

I matrix-valued function:

dM =
dM

dx
dx

I function of matrices:

df = tr

[(
∂f

∂X

)T
dX

]



Differentiation — expending to more components
I univariate scalar function: df = f ′xdx+ f ′ydy
I multivariate scalar function:

df = ∇xfdx+∇yfdy

I univariate vector function:
df = f ′xdx+ f ′ydy

I multivariate vector function:

df = ∇xfdx+∇yfdy

I matrix-valued function:

dM =
∂M

∂x
dx+

∂M

∂y
dy

I function of matrices:

df = tr

[(
∂f

∂X

)T
dX

]
+ tr

[(
∂f

∂Y

)T
dY

]



Chain Rules

Iteratively replace differentiations.

I Differentiation for f(X(t),Y (t)):

df = tr

[(
∂f

∂X

)T
dX

]
+ tr

[(
∂f

∂Y

)T
dY

]

=

{
tr

[(
∂f

∂X

)T dX
dt

]
+ tr

[(
∂f

∂Y

)T dY
dt

]}
dt

I Differentiation for f(g(x, z)):

df = f ′dg = f ′(∇xgdx+ g′zdz) = f ′∇xgdx+ f ′g′zdz



Common Results
I Let y = uTx.

∇y = uT

I Let y = xTAx.
∇y = xTA+ xTAT

I Let y = xTAx with symmetric A.

∇y = 2xTA

I Let y = ‖x‖2.
∇y = 2xT

I Let y = ‖x‖.

∇y =
xT

‖x‖
I Let y = Ax.

∇y = A



Common Results

I Let y = tr(ATX).
∂y

∂X
= A

I Let y = tr(X).
∂y

∂X
= I

I Let y = uTXv.
∂y

∂X
= uvT

I Let y = |X|.
∂y

∂X
= |X|X−1



Multivariate matrix differentiation

I We know that
d(XY ) = (dX)Y +XdY

I Then
0 = (dX)X−1 +Xd(X−1)

I Therefore
d(X−1) = −X−1(dX)X−1

Example:
Let y = uT (I + xD)−1v.

dy = uTd(I + xD)−1v

= −uT (I + xD)−1d(I + xD)(I + xD)−1v

= −uT (I + xD)−1D(I + xD)−1vdx



Linear Regression



Linear Regression Model

I Coordinate-wise

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi for i = 1, . . . , n

I Vectorize independent variables

yi = β
Txi + εi for i = 1, . . . , n

I Vectorize observations

y = β01 + β1x
(1) + β2x

(2) + · · ·+ βpx
(p) + ε

I Matrix form
y =Xβ + ε



Notation

I xij : value of j-th indepednent variable of unit i.

I xi := (1, xi1, xi2, . . . , xip)
T : vector of indepednent variables of unit i.

I x(j) := (x1j , x2j , . . . , xnj)
T : vector of j-th independent variable from all units.

I X := [x1,x2, . . . ,xn]
T = [1,x(1), . . . ,x(p)]: design matrix.

I β = (β0, β1, . . . , βp)
T : coefficient vector.

I ε = (ε1, ε2, εn)
T : noise/error vector.

Some useful identities:

I XTX =
∑n

i=1 xix
T
i

I [XTX]jk =
[
x(j−1)]T x(k−1) by letting X(0) = 1.



Assumptions (LINE)

I Linear relationship between the mean response and the independent variables.
diagnostics: scatter plot, partial regression plot.

I Independent observations. The errors εi’s are independent.

I Normally distributed. The errors εi’s are normally distributed.
diagnostics: QQ plot for residuals.

I Equal variances. The errors εi’s have equal variances.
diagnostics: residual plot.

In summary:
y ∼ Nn(Xβ, σ2In)

I Observed: X, y

I Unknown: β, σ2



Least Squares Estimation (LSE)

min
β
‖y −Xβ‖2

I objective function: residual sum-of-squares.

I solution: β̂ = (XTX)−1XTy.

I requirement: XTX invertible.

I fitted value: ŷ =Xβ̂ =X(XTX)−1XTy =:Hy where H =X(XTX)−1XT

is called hat matrix.

I residual: ε̂ = y − ŷ = (I −H)y

I unbiased estimator for variance: ŝ2 = ‖y −Xβ̂‖2
/
(n− (p+ 1))



Maximum Likelihood Estimation (MLE)

max
β,σ2

1

(2π)n/2
√
|σ2I|

exp

{
−1

2
(y −Xβ)T (σ2I)−1(y −Xβ)

}
I solution:

β̂ = (XTX)−1XTy

σ̂2 =
1

n
‖y −Xβ̂‖2

I requirement: XTX invertible.



Distributions

y ∼ Nn(Xβ, σ2I)

I β̂ = (XTX)−1XTy ∼ N (β, σ2(XTX)−1)

I ŷ =Xβ̂ ∼ N (Xβ, σ2H)

I ε̂ = y − ŷ ∼ N (0, σ2(I −H))

I ‖ε̂‖2 ∼ σ2χ2
k where k = rank(I −H) = n− p− 1.

I Fact: if x ∼ N (0,Σ) and Σ2 = Σ, then ‖x‖2 ∼ χ2
k where k = rank(Σ).



Gauss-Markov Theorem

I Under the conditions of linear regression model, β̂ is the best linear unbiased
estimator (BLUE) for β.

I That is if β̃ = wTy for some w and E[β̃] = β, then

Var(β̃) � σ2(XTX)−1.



Multicollinearity

I Multicollinearity: near-perfect linear dependence among the predictors.

I Quantification: variance-inflation-factor (VIF).
I The issue:

I XTX is close to be singular.
I large variance for β̂.

I Solution:
I Variable Selection: best subset, stepwise selection.
I Penalized Linear Regression: ridge, LASSO.




