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Linear Algebra



Vector Space (over real field)

A set V is a vector space if the followings hold for any u,v,w € V and a,b € R
» (closed under addition) u +v € V.

» (closed under scalar multiplication) au € V.
» (abelian group under addition)
> (associativity) (u +v) +w =u + (v + w)
> (commutativity) u +v=v+u
> (existence of identity) 30 € Vv +0=wv forallv e V.
> (existence of inverse) For any u € V, there exists —u € V such that u + (—u) = 0.

» (scalar multiplication)
> a(bu) = (ab)u
> lu=1u

» (linear space)
> a(u+v)=au+av
> (a+bu=au+bu



linear indpendence

> ui,...,u, €V are linearly independent if the only solution to

ajuy + agug + -+ apn =0

isap =ag =--- = a, = 0. Otherwise, they are linearly dependent.
» {uj,us,...,u,} C S is called the maximal linearly-independent subset of
S CVifforanyv €S, {uy,ug,...,u,, v} are linearly dependent.

» The cardinality (size) of the maximal linearly-independent subset of S C V' is
called the rank of S.



subspace and spanning

» S C Vis called a (linear) subspace of V if S inheritates the addition and the
scalar multiplication from V and S itself is a vector space.

» The (linear) span of {uy,...,u,} is the smallest subspace of V' that contains
{ul, oo ,un}.



basis and dimension

» {uj,...,u,} is a basis of V if its elements are linearly independent and span the
space V.

» The cardinality of any basis of V is the dimension of V.
» Let {u,...,u,} be a basis of V. For any v € V, the decomposition

v =a1u1 + au2 + -+ apuy

is unique, and the coefficients aq, ..., a, are called the coordinates of v on the
basis.

> Example: Euclidean space.



Inner Product Space

vector space + inner product = inner product space

> inner product (-,-) : V x V — R.
u,u) > 0and (u,u) =0if and only if u =0

> (

(u,v) = (v,u)
(au v) = a(u,v)
(

>
>
> (u,v+w) = (u,v) + (u,w)

» inner product space is a normed space equipped with norm

[ully = v/ {u, u)



Orthogonality

» u # 0 and v # 0 are othogonal if and only if (u,v) = 0.
» A basis is orthogonal if its elements are pair-wise orthogonal.
» An orthogonal basis is orthonormal if any of the elements has norm 1.

> A mapping P:V — U C V is an orthogonal projection if and only if

» Pu=wuforany u cU.
» (Pu,u— Pu)=0foranyueV.



Matrix

» Matrix is an array of real numbers:

a1 a2 v Glg

a1 Q22 -+ G2g
A= i

m,1 Gm2 *° Ommn

> Matrix is an aggregation of Euclidean vectors: (u; € R™)

A:[ul us ... un]

» Matrix is a linear mapping:

n n
A:R"™ R (z1,...,2m) — E aljx],...,g Anj;
J=1 Jj=1



We will skip..

» Basic operations of matrix.
» Special matrices (zero, identity, diagonal, etc..)

» Determinant.



Rank

If A=[u,...,up] =[vy,... ,vm]T, where u;'s are columns and v;'s are rows of A,
then
» span(ui,...,u,) is the column space or the manifold of A, denoted by col(A).
» rank:
rank(A) :=rank(uq,...,u,) = rank(vy, ..., vy)

» rank is the dimension of the columns space.

rank(A) = dim(col(A)) = dim(col(AT)) <m An



Trace

> Trace of a squared matrix is the sum of the elements on the diagnoal.

= Zn: Aii
i=1

P> Use trace to present sum of pairwise products of two matrices. Let
A, B € R™*™ Then we have

tr(A”B) = tr(BT A) = Z Z Ay Bij

i=1 j=1



Moore-Penrose Inverse

» For A € R™*" a psudo-inverse AT € R™*" satisfies
> AATA=A
> ATAAT = AT
» Both AAT and AT A are symmetric.

» For A € R™*" (m > n), if rank(A) = n, then

AT =(ATA) AT,



Woodbury Identity

» If A and C are invertible, and assuming all matrices are conformal, we have
(A+UcVv)'=A'—A'U(Cct+vaAalUu)yva!
» Special case: A=1,C=1[1],U = VT = .

UUT

T+uu’) =1 2%
( ) T+ [l

» Special case: U =C =1.

(A+ C)—l _ A—l o A—I(A—l + C—l)—lA—l



Eigenvalues and eigenvectors for symmetric matrices

Let A be an n X n symmetric matrix
» If Au = Au, then X is called an eigenvalue of A, and w is the eigenvector.
» A has n eigenvalues and eigenvectors (including zeros and duplicated eigenvalues).

> Let Ay > A9 > .- > A, be the eigenvalues in descending order, and uq, ..., uy,
be the corresponding eigenvectors.

> If \, >0, then A is positive-definite that w” Aw > 0 for all w € R and w # 0.
If A >0, A is positive semi-definite.

» A is singular if and only if A\, = 0.

» Rank of A equals the number of non-zero eigenvalues.



Eigenvalues and eigenvectors for symmetric matrices

> w is the optimum to the optimization:

max w! Aw
[lw[]=1

» w; (i > 1) is the optimum to the optimization:

max w’ Aw
lw||=1,wTu;=0 for 1<j<i



Eigenvalues Decomposition

» We can write .

=1
» Or
A=UDUT,

where D = diag(A1,...,An) and U = [u1,us, ..., uy] is orthonormal.



Singular values and singular vectors for squared matrices

Let A be an m X n matrix with m > n.

» If Au = sv and ATv = su, then s is a singular value of A, and w and v are the
right and left singular vectors.

52 is an eigenvalue of AT A and wu is the eigenvector.
52 is an eigenvalue of AA” and v is the eigenvector.

A has at most n non-zero singular values.

vvyYyy

Let the singular values be s; > s; > --- > s,,, and the singular vectors be u; and
v;fori=1,...,n.



Singular values and singular vectors for squared matrices

» u; and vy are the optimum to the optimization:

max w’ Az
lwl=1,||z]=1

P> w; is the optimum to the optimization:

max w! AT Aw
lw|=1

P v is the optimum to the optimization:

max w! AATw
[lwl=1



Singular Value Decomposition

» We can write .
A= Z si'viuiT
i=1
» Or
A=VDUT,

where D = diag(s1,...,8), V = [v1, -+ ,v,] and U = [uy,- - ,u,]. Both U
and V' are orthonormal.



Other Decompositions

» Cholesky Decompositin.
If A is symmetric positive definite, then

A=LL"
for some lower triangular matrix L.
> LU Decomposition.
If A is a square matrix, then
A=LU"

for some lower triangular matrix L and some upper triangular matrix U.

» QR Decomposition.
If Aism x n, then

A=QR

for some orthogonal m x m matrix @ and some upper triangular m x n matrix R.



Matrix Calculus



Basic definitions

P matrix calculus = multivariate calculus + assembling
» univariate scalar function: [’ = df/dx

» multivariate scalar function:

Vf=0f/0x = (0f /0x1,0f |Oxs,0f [Oxs, ..., 0f |Oxn)

» univariate vector function:

f' =df/dx = (df1/dx,df>/dz, ... dfy/dz)"

» multivariate vector function:

ofi  9fr N

o1 0T OTn

of2 0f2 .. Of

- 6.f | 0z Oxo OTn
Vi=--=1". . .
ox : : :

Ofk  Ofk ... Ofk

Oz, Oz Ozn,



Basic definitions

» function is matrix-valued:

aM
dx

» function of matrices:

of

X

0X21

of

_aXml

of
85( 2

0X22

of
8AX—'mQ

of
9Xn
9

8X2n

of
0Xmn




Differentiation

» univariate scalar function: df = f'dx

» multivariate scalar function:

df =V fdx
» univariate vector function:

df = f'dx
» multivariate vector function:

df =V fdx
» matrix-valued function: UM

dM = —dx
dzx

» function of matrices:

oeefi



Differentiation — expending to more components

> univariate scalar function: df = fidx + f,dy
» multivariate scalar function:

df =V fdx +V,fdy

» univariate vector function:
df = f;da: + f;dy

» multivariate vector function:
df =V,fdx +V,fdy

» matrix-valued function:

» function of matrices:

_ or \"
df = tr [(8)() dX




Chain Rules

Iteratively replace differentiations.

()]
R (CO]8

df = f'dg = f'(Vagdz + g.dz) = f'Vagdx + f'g.dz

» Differentiation for f(X(t),Y (t)):
& = tr [( )

» Differentiation for f(g(zx,2)):

+ tr




Common Results

>

Lety =u'x.
Vy=u
Let y = =T Ax.
Vy=alA+zT AT

Let y = 2”7 Az with symmetric A.

Vy =22"A
Let y = [l
Vy = 227
Let y = ] )
vy
]|
Let y = Ax.



Common Results

> Let y = tr(ATX).

> Let y = tr(X).

> Lety = ul Xv.

> Let y = | X|.

4
e
9 xx



Multivariate matrix differentiation

» We know that
d(XY)=(dX)Y + XdY

» Then
0=@X)X '+ Xd X1
» Therefore
dXH=-Xx"1dx)x!
Example:
Let y = ul' (I + D) tw.
dy = u"d(I + D) v
= —u'(I +2D)Yd(I + zD)(I + zD) v
= —u' (I +2D)"'D(I + D) 'vdx



Linear Regression



Linear Regression Model

» Coordinate-wise
Vi = PBo + Prxi1 + Poxio + -+ Bprip + € fori=1,....n
P Vectorize independent variables
yi=pTxi+e fori=1,...,n
» Vectorize observations
y = Bol + B + Byx® + ... 4+ B,aP + €

» Matrix form
y=XB+e



Notation

» x;;: value of j-th indepednent variable of unit 3.

> x; = (1, zi1, T, . .. ,xip)T: vector of indepednent variables of unit 3.

> ) = (15, x25, - . ,xnj)T: vector of j-th independent variable from all units.
> X =[xy, z0,..., 2,7 = [1, 2D, ... xP)]: design matrix.

> B=(Bo,b1,---,B)T: coefficient vector.

» € = (e1,€2,6,)": noise/error vector.

Some useful identities:
> XX =YL el
> [XTX] = [20-D]7 2D by letting X© = 1.



Assumptions (LINE)

» Linear relationship between the mean response and the independent variables.
diagnostics: scatter plot, partial regression plot.

» Independent observations. The errors ¢;'s are independent.

» Normally distributed. The errors ¢;'s are normally distributed.
diagnostics: QQ plot for residuals.

» Equal variances. The errors ¢;'s have equal variances.
diagnostics: residual plot.

In summary:
Yy~ Nn(Xﬁa U2In)

» Observed: X, y
» Unknown: 3, o2



Least Squares Estimation (LSE)

min ly — X8|

objective function: residual sum-of-squares.

solution: 8= (XTX)1XTy.

requirement: X7 X invertible.

fitted value: § = X8 = X(XTX) 2 XTy = Hy where H = X(XTX)1x7T
is called hat matrix.

vvvyyypy

v

residual: e=y—y=(I—H)y

v

unbiased estimator for variance: §2 = ||y — X/é||2/(n —(p+1))



Maximum Likelihood Estimation (MLE)

1 1 T/ 2 —1
R =T exp{ (0= XB) D)y - X)
» solution:

B=(X"X)"'X"y

o1 5
5% = ~|ly - X P’
n

> requirement: X7 X invertible.



Distributions

y ~ No(XB,0°I)

> B=(X"X)"' X"y ~ N(B,0*(XTX)™)

> §=XB~N(XB,0°H)

> é=y—9~N(0,0%(I - H))

> ||€]|? ~ 02X where k =rank(I — H) =n—p— 1.

> Fact: if £ ~ N(0,X) and £? = X, then ||z||* ~ x? where k = rank(X).



Gauss-Markov Theorem

» Under the conditions of linear regression model, ﬁ is the best linear unbiased
estimator (BLUE) for 3.

» Thatis if 3 = wly for some w and E[B] = 3, then

Var(B) = o?(XTX)7 .



Multicollinearity

» Multicollinearity: near-perfect linear dependence among the predictors.

» Quantification: variance-inflation-factor (VIF).

» The issue:
> X7 X is close to be singular.
» large variance for 3.

» Solution:

» Variable Selection: best subset, stepwise selection.
» Penalized Linear Regression: ridge, LASSO.
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