STAT 574 Linear and Nonlinear Mixed Models

Lecture 0: Overview

Chencheng Cai

Washington State University

Lecture Tu/Th 1:30 – 2:45 PM @CUE 418

Office Hours Wed 12 - 3 PM @Neill 405 or by appointment

Spring Break Week 10 (Mar 10 - 14)

- Contact email: chencheng.cai@wsu.edu
 - zoom: https://wsu.zoom.us/my/chenchengcai
 - Site

 Canvas
 - https://chenchengcai.com/teaching/Stat574

Course Requirements

- ▶ Prerequisites: STAT 530, STAT 556, and R/Python programming.
- Textbook:

Mixed Models: Theory and Applications with R, 2nd Edition. Eugene Demidenko. Wiley 2013.

 Recommended reading: Mixed-Effects Models in S and S-PLUS.
 José C. Pinheiro and Douglas M. Bates. Springer 2000.

Assessment

- Homework: 40% Around six homework in total.
- Exam: 40%
 Two exams: mid-term and final.
- ▶ Project: 20%
 - A case study project on extended topics.

Tentative topics for the final project

- Chapter 11: Statistical Analysis of Shape
- Chapter 12: Statistical Image Analysis
- Hierarchical Bayesian models and variational inference (NLP related)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Meta-analysis and fusion learning

Tenative Schedule

▶ (2 weeks): Course overview and review on linear algebra and regression theory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- ▶ (2 weeks): Linear mixed-effect models.
- ► (2 weeks): Estimation algorithms.
- (2 weeks): Marginal models.
- ▶ (2 weeks): Generalized linear mixed models.
- (2 weeks): Nonlinear mixed-effect models.
- ► (2 weeks): Model diagnostics.

From classical regression to mixed-effect models

Classical regression model:

$$y_k = \alpha + \beta x_k + \epsilon_k, \quad k = 1, \dots, K,$$

where the $\{\epsilon_k\}$ are independent and identically distributed random variables with zero mean and constant variance σ^2 .

Mixed-effect model:

$$y_{ij} = \alpha_i + \beta x_{ij} + \epsilon_{ij}, \quad i = 1, \dots, N, \ j = 1, \dots, n_j,$$

where the double index $\left(ij\right)$ means the j-th unit in i-th cluster. Furthermore, we assume

$$\alpha_i = \alpha + b_i, \quad i = 1, \dots, N,$$

where $\{b_i\}$ are i.i.d. $N(0, \sigma_b^2)$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

From classical regression to mixed-effect models

Classical regression model:

$$y = X\beta + \epsilon,$$

where $\boldsymbol{\epsilon} \sim N(0, \sigma^2 \boldsymbol{I})$.

Mixed-effect model

$$\boldsymbol{y}_i = \boldsymbol{X}_i \boldsymbol{\beta} + \boldsymbol{Z}_i \boldsymbol{b}_i + \boldsymbol{\epsilon}_i, \quad i = 1, \dots, N,$$

where $\epsilon_i \sim N(0, \sigma^2 I)$ for i = 1, ..., N, and $b_i \sim N(0, \sigma^2 D)$ for i = 1, ..., N.

うせん 前 ふかや かや うちょう

Mixed-effect Models

Model hierarchy:

$$egin{aligned} & m{b}_i \sim N(0, \sigma^2 m{D}) \ & m{y}_i \mid m{eta}, m{b}_i \sim N(m{X}_i m{eta} + m{Z}_i m{b}_i, \sigma^2 m{I}) \end{aligned}$$

Mixed-effect Model

- \blacktriangleright Known: X_i , Z_i
- **>** Estimate: $\boldsymbol{\beta}$, \boldsymbol{b}_i , σ^2 , \boldsymbol{D} .

Hierarchical Bayesian Model

- Known: X_i , Z_i , $\sigma^2 D$ and prior for σ^2 .
- **>** Estimate: β , b_i , σ^2

Why mixed-effect models?

Heterogeneity

No two leaves are alike!

Personalized/individualized inference.

(ロ) (型) (E) (E) (E) (O)()

Extensions

► Nonlinear:

$$\boldsymbol{y}_i = \boldsymbol{f}_i(\boldsymbol{\beta}) + \boldsymbol{Z}_i(\boldsymbol{\beta})\boldsymbol{b}_i + \epsilon_i, \quad i = 1, \dots, N$$

► Generalized Linear:

$$g(\boldsymbol{y}_i) = \boldsymbol{X}_i \boldsymbol{\beta} + \boldsymbol{Z}_i \boldsymbol{b}_i + \boldsymbol{\epsilon}_i, \quad i = 1, \dots, N$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

From Data to Conclusion

- 1. Data
- 2. Model
- 3. Estimation
 - Close-form
 - Algorithmic
- 4. Properties
 - Feasibility
 - Bias, Variance
 - Asymptotics
- 5. Implementation
 - R/Python
 - algorithms

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- 6. Diagnostics
- 7. Conclusion

To do a good job, an artisan needs the best tools

- ► Linear algebra.
- Matrix calculus.
- Regression theory.