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Multifactor ANOVA

I In the previous lectures, we have discussed one-way ANOVA, which is used to
compare the means of two or more groups.

I In this lecture, we will discuss multifactor ANOVA, which is used to compare the
means of two or more groups when there are two or more factors.

Topics to be covered:

I Two-factor ANOVA without replication

I Two-factor ANOVA with replication

We will focus on:

I Sum of squares and mean squares

I F-test and multiple comparisons

I Fixed and random effects
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Two-Factor ANOVA without Replication

Suppose we have two factors:

I Factor A: I levels, i = 1, 2, . . . , I

I Factor B: J levels, j = 1, 2, . . . , J

The possible number of treatments is I × J .
Remark: different index notations from one-way ANOVA.

Furthermore, we assume we have one observation for each treatment:

I Xij is the observation for the i-th level of factor A and the j-th level of factor B.

I xij the observed value of Xij .

The analysis of variance for such a model is called a two-factor ANOVA without
replication.
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Example

A research on the erabsiablity of stains on a fabric from three brands of pen and four
different washing treatments. The observation is quantitaive measurement of color
change.



The Means

Similar to one-way ANOVA, we can define the following means:

I The sample mean of the i-th level of factor A:

X̄i· =
1

J

J∑
j=1

Xij

I The sample mean of the j-th level of factor B:

X̄·j =
1

I

I∑
i=1

Xij

I The grand sample mean:

X̄·· =
1

IJ

I∑
i=1

J∑
j=1

Xij



Fixed Effect Model

In a fixed effect model, we assume

Xij = µij + εij for i = 1, 2, . . . , I, j = 1, 2, . . . , J

with εij ∼ N(0, σ2).

I Total number of observations: IJ

I Total number of parameters: IJ + 1

I The model is not estimable until we impose extra constraints.
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Fixed Effect Model

We consider the following additive model:

Xij = αi + βj + εij ,

that is, we assume µij = αi + βj .

The difference in responeses between any two treatment levels can be decomposed into
the sum of the differences of the corresponding factor levels:

µij − µi′j′ = (αi − αi′) + (βj − βj′)
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Fixed Effect Model

The additivity assumption can be checked visually.



Fixed Effect Model

Xij = αi + βj + εij ,

However, this model still has the identifiability problem:
The following transformation of the parameters does not change the model:

αi → αi + c, βj → βj − c

for any constant c.
Additional constraints are needed to make the parameters unique.



Fixed Effect Model

We consider the following model:

Xij = µ+ αi + βj + εij

with
∑I

i=1 αi = 0 and
∑J

j=1 βj = 0.

The model is now identifiable.

Proof: Let (µ, α1, . . . , αI , β1, . . . , βJ) and (µ′, α′1, . . . , α
′
I , β
′
1, . . . , β

′
J) be two sets of

parameters that give the same model. Then we have

µ+ αi + βj = µ′ + α′i + β′j for all i, j.

Take the sum over i and j, we have µ = µ′. Take the sum over j, we have αi = α′i for
all i. Take the sum over i, we have βj = β′j for all j.
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Fixed Effect Model

Xij = µ+ αi + βj + εij

The interpretation of the parameters:

I µ: the grand mean

I αi: the effect of the i-th level of factor A

I βj : the effect of the j-th level of factor B

Because:

I µ = E[X̄··]

I αi = E[X̄i·]− E[X̄··]

I βj = E[X̄·j ]− E[X̄··]
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Fixed Effect Model

Xij = µ+ αi + βj + εij

The parameters can be estimated unbiasedly by:

µ̂ = X̄·· =
1

IJ

I∑
i=1

J∑
j=1

Xij

α̂i = X̄i· − X̄·· =
1

J

J∑
j=1

Xij − X̄··

β̂j = X̄·j − X̄·· =
1

I

I∑
i=1

Xij − X̄··

Verify that
∑I

i=1 α̂i = 0 and
∑J

j=1 β̂j = 0.



Sum of Sqaures
We can define the following sum of squares for the two-factor ANOVA:

SST =

I∑
i=1

J∑
j=1

(Xij − X̄··)2 df :IJ − 1

SSA = J

I∑
i=1

(X̄i· − X̄··)2 df :I − 1

SSB = I

J∑
j=1

(X̄·j − X̄··)2 df :J − 1

SSE =
I∑
i=1

J∑
j=1

(Xij − X̄i· − X̄·j + X̄··)
2 df :(I − 1)(J − 1)

Verify that
SST = SSA+ SSB + SSE



Mean Sqaures
We can define the following mean squares for the two-factor ANOVA:

MSA =
SSA

I − 1

MSB =
SSB

J − 1

MSE =
SSE

(I − 1)(J − 1)

The expected mean squares are:

E[MSA] = σ2 + J
I∑
i=1

α2
i

E[MSB] = σ2 + I

J∑
j=1

β2j

E[MSE] = σ2
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Hypothesis Testing

To test the main effects of factor A, we consider the following hypotheses:

H0 :α1 = α2 = · · · = αI = 0

Ha :At least one αi is not zero

Reject null when

F =
MSA

MSE
> Fα,I−1,(I−1)(J−1)

Similarly, to test the main effects of factor B, we consider the following hypotheses:

H0 :β1 = β2 = · · · = βJ = 0

Ha :At least one βj is not zero

Reject null when

F =
MSB

MSE
> Fα,J−1,(I−1)(J−1)
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From the Perspective of Nested Models

The testing of the main effect of factor A is equivalent to testing the following nested
models:

Full model: Xij = µ+ αi + βj + εij

Reduced model: Xij = µ+ βj + εij

I The sum of squares error for the full model is SSE.

I The sum of squares error for the reduced model is SSE + SSA.

I The F-test statistic is

F =
(SSE + SSA− SSE)/(I − 1)

SSE/[(I − 1)(J − 1)]
=
MSA

MSE
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The ANOVA Table

The ANOVA table for the washing example is:



Tukey’s Method for Multiple Comparison

The procedure is same as one-way ANOVA except that we have different thresholds for
the different means:

wA = Qα,I,(I−1)(J−1)
√
MSE/J, wB = Qα,J,(I−1)(J−1)

√
MSE/I

I We use wA to compare the means of factor A.

I We use wB to compare the means of factor B.



Tukey’s Method for Multiple Comparison

The procedure is same as one-way ANOVA except that we have different thresholds for
the different means:

wA = Qα,I,(I−1)(J−1)
√
MSE/J, wB = Qα,J,(I−1)(J−1)

√
MSE/I

I We use wA to compare the means of factor A.

I We use wB to compare the means of factor B.



Example

Recall the washing example.

If we want to compare the different washing treaments, the threshold is

w = Qα,4,6
√
MSE/3 = 0.34.

Therefore, the means of washing treatments 2, 3, 4 are close to each other.
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Completely Randomized Design and Randomized Block Design

If we would like to compare the means of different levels of factor A, we can consider
the following completely randomized design:

1. Sample IJ units randomly from the population.

2. Randomly choose J units from the IJ units for the first level of factor A.

3. Randomly choose J units from the remaining IJ − J units for the second level of
factor A.

4. ...

5. Randomly choose J units from the remaining 2J units for the (I − 1)-th level of
factor A.

6. The remaining J units are for the I-th level of factor A.
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Completely Randomized Design and Randomized Block Design

However, there might be other covariates Z that affect the response variable. In this
case, we can consider the following randomized block design as a generalization as a
paired experiments:

1. Divide the population into I blocks based on their Z values. Call it factor B or
blocks.

2. Sample I units from the population in the first block.

3. Randomly assign the I units to the I levels of factor A.

4. Sample I units from the population in the second block.

5. Randomly assign the I units to the I levels of factor A.

6. ...

7. Sample I units from the population in the J-th block.

8. Randomly assign the I units to the I levels of factor A.

The other way that random samples from each levels of factor A is randomly assigned
to the blocks is also possible.
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Example

An organization would like to study the annual power consumption of five brands of
dehumidifiers.

I The brand is factor A with five levels.
I The completely randomized design with J = 4 is

I Randomly sample J = 4 dehimifiers from each brand and test the power
consumption.

However, the humidity level might affect the power consumption. Therefore, we can
consider J = 4 different humidity levels as blocks.

I The humidity level is factor B with four levels.
I The randomized block design is

I Sample J = 4 dehumidifiers from each brand.
I Randomly assign the J = 4 dehumidifiers to the J = 4 humidity levels and test the

power consumption.
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Randomized Block Design

The purpose of the randomized block design is to offset the effect of any
confounders.

I The confounder is a variable that is correlated with the factor of interest and
affects the response variable.

I Ignoring the confounder might lead to totally wrong conclusions.

In the previous example, the power consumption is likely an increasing function of the
humidity level and the brand number.

However, if in high humidity levels, people tend to use dehumidifiers with a lower
brand number to save energy and vice versa, the power consumption might be a
decreasing function of the brand number.

See also: Simpson’s paradox.
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