I = 3
J = 4
x1 = c(2.62, 2.99, 3.39, 2.86)
x2 = c(3.47, 3.85, 3.77, 3.63)
x3 = c(4.78, 4.41, 4.91, 5.06)
dat = data.frame(load = c(x1, x2, x3), level=rep(c("42mm", "36mm","31.2mm"), each=4))
print(dat)
## load level
## 1 2.62 42mm
## 2 2.99 42mm
## 3 3.39 42mm
## 4 2.86 42mm
## 5 3.47 36mm
## 6 3.85 36mm
## 7 3.77 36mm
## 8 3.63 36mm
## 9 4.78 31.2mm
## 10 4.41 31.2mm
## 11 4.91 31.2mm
## 12 5.06 31.2mm
The treament means / variance and grand mean can be computed
treat.mean = aggregate(dat$load, by=list(dat$level), FUN=mean)
treat.var = aggregate(dat$load, by=list(dat$level), FUN=var)
grand.mean = mean(dat$load)
The sum of squares and mean squares can be computed
sse = (J-1) * sum(treat.var$x)
sstr = J * (I-1) * var(treat.mean$x)
mse = sse / (I*J-I)
mstr = sstr / (I-1)
The F-statistic and its p-value:
f.stat = mstr/mse
p.value = 1 - pf(f.stat, I-1, I*J-I)
print(c(f.stat, p.value))
## [1] 4.857779e+01 1.504349e-05
It can be done by the aov
function.
res.anova = aov(load~level, data=dat)
print(summary(res.anova))
## Df Sum Sq Mean Sq F value Pr(>F)
## level 2 6.765 3.383 48.58 1.5e-05 ***
## Residuals 9 0.627 0.070
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The Tukey’s test can be done by TukeyHSD
function.
res.tukey = TukeyHSD(res.anova)
print(res.tukey)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = load ~ level, data = dat)
##
## $level
## diff lwr upr p adj
## 36mm-31.2mm -1.110 -1.630967 -0.5890334 0.0005650
## 42mm-31.2mm -1.825 -2.345967 -1.3040334 0.0000115
## 42mm-36mm -0.715 -1.235967 -0.1940334 0.0100950