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Example: One-way ANVOA

The fracture load of a certain type of material was measured under three different
distances from the center.

I The factor: distance from the center.

I Three levels: 1, 2, 3.

I Each level has 4 observations.

I xi· and x·· are the sums of observations.
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Example: One-way ANVOA

I The mean observation at each level is

x̄1· = x1·/4 = 2.965, x̄2· = x2·/4 = 3.680, x̄3· = x3·/4 = 4.790.

I The grand mean is
x̄·· = x··/12 = 3.812
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Example: One-way ANVOA

I The sample variance within each level is

s21 =
1

4− 1

[
(2.62− 2.965)2 + (2.99− 2.965)2 + (3.39− 2.965)2 + (2.86− 2.965)2

]
= 0.1038

s22 =
1

4− 1

[
(3.47− 3.680)2 + (3.85− 3.680)2 + (3.77− 3.680)2 + (3.63− 3.680)2

]
= 0.0279

s23 = (4.78− 4.790)2 + (4.41− 4.790)2 + (4.91− 4.790)2 + (5.06− 4.790)2

= 0.0773

I The SSE is
SSE = (4− 1)(s21 + s22 + s23) = 0.6267
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Example: One-way ANVOA

I The SSTr is

SSTr = 4
[
(2.965− 3.812)2 + (3.680− 3.812)2 + (4.790− 3.812)2

]
= 6.7653

I The SST is
SST = SSTr + SSE = 7.3920
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Example: One-way ANVOA

I The MSE is

MSE =
SSE

IJ − I
=

0.6267

12− 3
= 0.0696

I The MSTr is

MSTr =
SSTr

I − 1
=

6.7653

3− 1
= 3.3826

I The F -statistic is

F =
MSTr

MSE
=

3.3826

0.0696
= 48.60

I The p-value is
p = P (F2,8 > 48.60) < 0.0001

I The conclusion is that the distance from the center has a significant effect on the
fracture load.
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ANOVA Table

All the SS and MS information as well as F-statistic can be organized in an ANOVA
table.

Source df SS MS F

Treatment I − 1 SSTr MSTr F = MSTr
MSE

Error IJ − I SSE MSE

Total IJ − 1 SST



ANOVA Table

Source df SS MS F

Treatment I − 1 SSTr MSTr F = MSTr
MSE

Error IJ − I SSE MSE

Total IJ − 1 SST

I ”Treatment” can be replaced by the factor name, and ”Error” can be replaced by
”Residual”.

I The Total variation is decomposed into Treatment and Error variation.

I Decomposition 1: Total df = Treatment df + Error df.

I Decomposition 2: Total SS = Treatment SS + Error SS.

I MS is computed per source of variation by dividing SS by df.

I The F -statistic is the ratio of MS for Treatment to MS for Error.

I The ”Total” row is sometimes omitted.
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Example

The ANOVA table for the fracture load example is

Source df SS MS F p-value

Treatment 2 6.7653 3.3826 48.60 < 0.001
Error 9 0.6267 0.0696

Total 11 7.3920

Output from R:
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Multiple Comparison

Suppose we want to compare the mean of one treatment level to another.

H0 : µi = µi′ v.s. Ha : µi 6= µi′

The two sample t-test (Pooled) gives the following CI for µi − µi′ :

x̄i − x̄i′ ± tα/2,2J−2

√
S2
i + S2

i′

2J

We only need check whether the CI contains 0.

I We have I(I − 1)/2 pairs of comparisons.

I If all tests are independent with significance level α, the overall Type I error rate is
1− (1− α)I(I−1)/2, whcih could be large when I is large.

I We need to adjust the significance level for each test to control the overall Type I
error rate.
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Multiple Comparison — Tukey’s Method

The simultaneous confidence interval for µi − µi′ is

x̄i − x̄i′ ±Qα,I,I(J−1)

√
MSE

J

where Qα,I,I(J−1) is the α-quantile of the Studentized range distribution with I and
I(J − 1) degrees of freedom.

I There is at least 1− α probability that the interval contains µi − µi′ for every
pair of i and i′.

I The Studentized range distribution is a generalization of the Student’s
t-distribution for multiple comparisons.

I The quantile Qα,I,I(J−1) can be found by qtukey in R.
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Tukey’s Procedure in Identifying Significant Differences

I Compute

w = Qα,I,I(J−1)

√
MSE

J

I Order the treatment means from smallest to largest.

I Underscore maximal consecutive treatment means such that the difference of the
maximum and minimum of the underscored means is less than w.



Tukey’s Procedure in Identifying Significant Differences

Suppose we have I = 5 treatment levels with sample means:

x̄1· = 14.5, x̄2· = 13.8, x̄3· = 13.3, x̄4· = 14.3, x̄5· = 13.1

We order the means:

x̄5· = 13.1, x̄3· = 13.3, x̄2· = 13.8, x̄4· = 14.3, x̄1· = 14.5

Suppose we compute w = 0.4. Then we underscore the means:

x̄5· x̄3· x̄2· x̄4· x̄1·

13.1 13.3 13.8 14.3 14.5
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Fixed Effect ANOVA Model

The anova model can be written as

Xij = µi + εij

where µi is the (unknown) mean of the ith treatment level and εij is the random error
term.

I The random error term is assumed to be normally distributed with mean 0 and
variance σ2.

I The random error term is independent of the treatment levels.

I The random error term is independent and identically distributed.

I The corresponding estimator of µi is µ̂i = X̄i·.
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Fixed Effect ANOVA Model

We define

µ =
1

I

I∑
i=1

µi, αi = µi − µ,

where

I µ is the (true) grand mean.

I αi is the deviation of the ith treatment mean from the grand mean.

I αi is also called the effect of the ith treatment level.

Then the model can be rewritten as

Xij = µ+ αi + εij

with the constraint
I∑
i=1

αi = 0.
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Fixed Effect ANOVA Model

Xij = µ+ αi + εij with
I∑
i=1

αi = 0

I This is a fixed effect model because the treatment effects are fixed.

I The estimators are
µ̂ = X̄··, α̂i = X̄i· − X̄··.

I The ANOVA test is to test

H0 : α1 = α2 = · · · = αI = 0.
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Fixed Effect ANOVA Model

Xij = µ+ αi + εij with
I∑
i=1

αi = 0

Our previous result shows, under the alternative,

E(MSE) = σ2, E(MSTr) ≥ σ2

We can have a more detailed result for the fixed effect ANOVA model:

E(MSTr) = σ2 +
J

I − 1

∑
i

α2
i .



Fixed Effect ANOVA Model
A quick proof:

SSTr = J
∑
i

(X̄i· − X̄··)2 = J
∑
i

(
X̄2
i· + X̄2

·· − 2X̄i·X̄··
)

= J

(∑
i

X̄2
i· − IX̄2

··

)

Because X̄i· ∼ N(µi, σ
2/J) and X̄·· ∼ N(µ, σ2/(IJ)), we have

E(SSTr) = J

(∑
i

E(X̄2
i·)− I · E(X̄2

··)

)
= J

(∑
i

(
µ2i +

σ2

J

)
− I

(
µ2 +

σ2

IJ

))

= J

(∑
i

µ2i − Iµ2 +
I − 1

J
σ2 = J

∑
i

α2
i + (I − 1)σ2

)

Therefore,

E(MSTr) =
E(SSTr)

I − 1
= σ2 +

J

I − 1

∑
i

α2
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Random Effect ANOVA Model

We can also assume
Xij = µ+Ai + εij

where Ai ∼ N(0, σ2A) is the random effect of the ith treatment level.

I The treatment effect in a random effect model is a random variable.

I Although Ai is random, Ai remains constant for all observations in the ith
treatment level.

I The random effect model is more flexible than the fixed effect model.

I The random effect model is more appropriate when the treatment levels are
randomly selected from a larger population.
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Random Effect ANOVA Model

If A1, A2, . . . , AI are observed, we have the conditional mean of MSTr as

E(MSTr | A1, A2, . . . , AI) = σ2 +
J

I − 1

∑
i

(Ai − Ā)2.

The unconditional mean of MSTr is

E(MSTr) = E [E(MSTr | A1, A2, . . . , AI)] = σ2+
J

I − 1
E

[∑
i

(Ai − Ā)2

]
= σ2+Jσ2A.

The hypothesis test becomes

H0 : σ2A = 0 v.s. Ha : σ2A > 0.
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]
= σ2+Jσ2A.

The hypothesis test becomes

H0 : σ2A = 0 v.s. Ha : σ2A > 0.



Unequal Sample Sizes

Although we have assumed equal sample sizes in the ANOVA model for notational
convinience, the ANOVA model can be extended to unequal sample sizes.

Now we assume Ji observations are taken at the ith treatment level and the total
number of observations is N:

N =

I∑
i=1

Ji.
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Unequal Sample Sizes
Sum of squares and mean squares are defined as before:

I SSE and MSE:

SSE =

I∑
i=1

Ji∑
j=1

(Xij − X̄i·)
2, MSE =

SSE

N − I
.

I SSTr and MSTr:

SSTr =

I∑
i=1

Ji(X̄i· − X̄··)2, MSTr =
SSTr

I − 1
.

The F-statistic is the same as before:

F =
MSTr

MSE
.

But its distribution under the null hypothesis is now FI−1,N−I .
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Unequal Sample Sizes

The Tukey’s confidence interval for µi − µi′ should be adjusted to

x̄i − x̄i′ ±Qα,I,N−I

√
MSE

2

(
1

Ji
+

1

Ji′

)
.

Therefore, we need to compute the threshold difference as

wii′ = Qα,I,N−I

√
MSE

2

(
1

Ji
+

1

Ji′

)
for each pair of i and i′.



Example

The elastic modulus (GPa) obtained by a new ultrasonic method for specimens of a
certain alloy produced using three different casting processes.



Example

The anova table is

The p-value is
P (F2,19 > 5.52) = 0.013.

The conclusion is that the casting process has a significant effect on the elastic
modulus.
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Example

To compute Tukey’s confidence interval for the difference of means is
(Q0.05,3,19 = 3.59)

w12 = Q0.05,3,19

√
0.3158

2

(
1

8
+

1

8

)
= 0.713

w13 = w23 = Q0.05,3,19

√
0.3158

2

(
1

6
+

1

8

)
= 0.771

The conclusion is
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