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Analysis of Variance

A factor is a qualitative variable that defines the groups to be compared.

The levels of a factor are the distinct values of the factor.

Examples: (factors highlighted)

>

>

An experiment to study the effects of five different brands of gasoline on
automobile engine operating efficiency (mpg).

An experiment to study the effects of the presence of four different sugar
solutions (glucose, sucrose, fructose, and a mixture of the three) on bacterial
growth.

An experiment to investigate whether hardwood concentration in pulp (%) at
three different levels impacts tensile strength of bags made from the pulp.

An experiment to decide whether the color density of fabric specimens depends on
which of four different dye amounts is used



Analysis of Variance

Analysis of variance (ANOVA) is a statistical method used to compare the
subpopulations of a factor.

>
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If there is one factor, it is called one-way ANOVA or single-factor ANOVA.

If there is one factor with two levels, the ANOVA should be similar to a
two-sample test.

All examples in the previous slide are one-way ANOVA.

If there are two (or more) factors, it is called two-way ANOVA (or multi-factor
ANOVA).

Example of two-way ANOVA:
An experiment to study the effects of two factors, temperature and humidity, on
the growth of a certain type of bacteria.



One-way ANOVA — Notations

» [: the number of levels of the factor.

» ;i =1,...,1: the population mean of the ith level of the factor.

v

The relevant hypotheses:

Ho:pp=p2=--=ps
H, : At least one of the means is different

» In experimental design, the ith level of the factor is often called a treatment.

» X;; is the jth observation in the ith treatment.

v

x;j is the value of X;; when the experiment is conducted.



Example

Compress strength of different types of boxes.

Type of Box Compression Strength (Ib) Sample Mean Sample SD
1 655.5 788.3 734.3 721.4 679.1 699.4 713.00 46.55
2 789.2 772.5 786.9 686.1 732.1 774.8 756.93 40.34
3 737.1 639.0 696.3 671.7 717.2 727.1 698.07 37.20
4 535.1 628.7 5424 559.0 586.9 520.0 562.02 39.87
Grand mean = 682.50




Different Means
Let X;; be the j-th observation in the i-th treatment.

Suppose each treatment level has J observations. Then the total number of
observations is I x J.

» The sample mean of the i-th treatment is

> Xy

J=1

k\'—‘

» The sample mean of all observations (grand mean) is

_ 1 4
.. 72

> Q: what if we have unequal number of observations in each treatment?

”M“



Sum of Squares
» The Sum of Squares Error (SSE) is
I J
SSE =) > (Xij—Xi)”
i=1 j=1
» The Sum of Squares Treatment (SSTr) is
I
SSTr=JY (X — X.)?
i=1
» The Sum of Squares Total (SST or SSTo) is

I J
SST =" (Xij — X.)°

i=1 j=1



Sum of Squares

The relationship between SST, SSTr, and SSE:
SST = SSTr +SSE

Q: what if we have unequal number of observations in each treatment?



Mean Sqaures

The mean sqaures are the sum of squares divided by the degrees of freedom.

SSX
degrees of freedom

MSX =

The degrees of freedom (df) can be calculated as

df = number of observations — number of parameters



Mean Sqaures

» The Mean Square Error (MSE) is

I J
SSE 1 = 9
MSE = T [J—I;:l ngl(XZ-j—XZ-.)

» The Mean Square Treatment (MSTr) is

1
SSTr J . S \2




Nested Models

Hy:pp=po=---=puy vs. Hgy:not all equal

» The full model is the model with all the treatment means different. (i.e.
Hy U Ha)
The estimators are
ﬂz:Xz forizl,...J.

» The reduced model is the model with all the treatment means equal. (i.e. Hp)
The estimator is
i =p=X. fori=1,...,1.

» The two models are nested because the reduced model is a special case of the full
model.



Nested Models

The sum of squared error for the full model is

I J I J
SSEp = 373 (X, ~ ) = 3 (X, - Ko = 55
=1 j=1 =1 j=1
The sum of squared error for the reduced model is

1 J I J
SSEreduced = Z Z(Xz] - ,az)z = Z Z X. = S5ST

i=1 j=1 i=1 j=1

> The extra sum of squares is

SSEreduced — SSEfu” =SST - SSE =S58Tr

» The full model uses I — 1 more parameters than the reduced model.
» The full model improves the fit by SST'r.



Nested Models

For the full model:
» Sum of squared error is SSFE with I.J — I degrees of freedom.

» Sum of squares fitted is SSTr with I — 1 degrees of freedom.
» Sum of squares total is SST with IJ — 1 degrees of freedom.

For the reduced model:
» Sum of squared error is SST with I.J — 1 degrees of freedom.

» Sum of squares fitted is 0 with 0 degrees of freedom.
» Sum of squares total is SST with IJ — 1 degrees of freedom.



F-Test for Nested Models

In order to test the nested model hypothesis:
Hj : reduced model is true v.s. H, : full model is true

We consider the following F-statistic:

(SSEreduced — SSEpuy)/difference in d.f.
SSEyy/residual d.f. of full model

F=

Large F-statistic suggests that the increase in fit is significant by considering the full
model.

We reject null hypothesis if F' is large enough.



F-Test for One-way ANOVA

In order to test the hypothesis
Hy:pup=po=---=puy v.s. Hgy:not all equal

We consider the following F-statistic:

_ MSTr  SSTr/(I-1)

F -
MSE ~— SSE/(IJ—1I)

Intuition:
» The numerator measures the variability between the treatment means.
» The denominator measures the variability within the treatments.

> A large F-statistic suggests that the treatment means are different.



F-Test for One-way ANOVA

Under the following assumptions:
» The observations are independent.
» The populations are normally distributed.
» The populations have the same variance.

The F-statistic follows an F-distribution with I — 1 and IJ — I degrees of freedom,
denoted by F]_L[J_[.

The decision rule is
» Reject Hy if F'> Fo 11,151
» Fail to reject Hy if FF < Fy1-1.1J-1
» The p-value is P(F > Fs).
» The critical value is Fi, 7—1.77-1.



Background — Chi Square (x?) Distribution
» If Z1,Zs,...,7Z) are independent standard normal random variables, then the sum
of their squares
Q=23 +2Z3+ -+ 2}
follows a x? distribution with k degrees of freedom, denoted by x3.
» The x? distribution is supported on [0, c0).
> Mean and variance:

E(Q) =k, Var(Q)= 2k

Probability




Background — Chi Square (x?) Distribution
> If Q ~ X%I and Q2 ~ X%Q are independent, then
Q=Q1+Q2~ Xi, 1k,
> If X1, Xo,..., Xp ~ N(0,1), then

k k
_ 1
Z(XZ» —X)2~ 2, with X= - in
i=1 i=1
> If X1, X0, ..., X ~ N(,LL, 1), then
k: —_
Z(Xi - X)2 ~ X%—l'
=1
> If X1, Xo,..., X, ~ N(u,02), then



Background — F Distribution
> If Q1 ~ xil and Qo ~ X%Z are independent, then

P Q1/k1
Q2/k2
follows an F-distribution with k1 and ko degrees of freedom, denoted by Fy, 1,.
» The F-distribution is supported on [0, 00).

25 ‘ |
d1=1, d2=1
di=2, d2=1

2 d1=5, d2=2
d1=10, d2=1
d1=100, d2=100
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F Distribution in ANOVA

Our assumption is that X;; ~ N (u;,02) for all i and j.
One the ond hand,

(X —Xi)? ~ o x5

J
=1

J
Therefore,
I J
SSE = Z Z(Xij - Xz'-)2 ~ GQX%J—I

i=1 j=1



F Distribution in ANOVA

Our assumption is that X;; ~ N (u;,02) for all i and j.

On the other hand,
X@'- ~ N(,ui,aQ/J).

Therefore, under null hypothesis (u; = p for all ),

Then



F Distribution in ANOVA

Recall our previous results:
2.2
» SSE ~o0°-Xx75_;-
» SSTr ~o?. X%—l under null hypothesis.

Given that SSE and SST'r are independent (beyond the scope),
we have, under null hypothesis,

_ MSTr _ SSTr/(I-1) X7 /(I —1)

F - ~
MSE — SSE/(IJ—1) X2, ,/IJ—1)

~Fr11J-1.



F Distribution in ANOVA

Under null hypothesis,
> Because SSE ~ o2 x%,_;, we have

E(SSE)= (IJ —I)o?, E(MSE)= o2
» Because SSTr ~ o2 - x3_,, we have
E(SSTr) = (I —1)0®, E(MSTr) = o>

Under alternative hypothesis,

> We still have
E(SSE) = (1J —I)o?, E(MSE) = o>

» But for SSTr, we have

E(SSTr) > (I —1)o%, E(MSTr) > o>



