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Analysis of Variance

A factor is a qualitative variable that defines the groups to be compared.

The levels of a factor are the distinct values of the factor.

Examples: (factors highlighted)

I An experiment to study the effects of five different brands of gasoline on
automobile engine operating efficiency (mpg).

I An experiment to study the effects of the presence of four different sugar
solutions (glucose, sucrose, fructose, and a mixture of the three) on bacterial
growth.

I An experiment to investigate whether hardwood concentration in pulp (%) at
three different levels impacts tensile strength of bags made from the pulp.

I An experiment to decide whether the color density of fabric specimens depends on
which of four different dye amounts is used



Analysis of Variance

A factor is a qualitative variable that defines the groups to be compared.

The levels of a factor are the distinct values of the factor.

Examples: (factors highlighted)

I An experiment to study the effects of five different brands of gasoline on
automobile engine operating efficiency (mpg).

I An experiment to study the effects of the presence of four different sugar
solutions (glucose, sucrose, fructose, and a mixture of the three) on bacterial
growth.

I An experiment to investigate whether hardwood concentration in pulp (%) at
three different levels impacts tensile strength of bags made from the pulp.

I An experiment to decide whether the color density of fabric specimens depends on
which of four different dye amounts is used



Analysis of Variance

A factor is a qualitative variable that defines the groups to be compared.

The levels of a factor are the distinct values of the factor.

Examples: (factors highlighted)

I An experiment to study the effects of five different brands of gasoline on
automobile engine operating efficiency (mpg).

I An experiment to study the effects of the presence of four different sugar
solutions (glucose, sucrose, fructose, and a mixture of the three) on bacterial
growth.

I An experiment to investigate whether hardwood concentration in pulp (%) at
three different levels impacts tensile strength of bags made from the pulp.

I An experiment to decide whether the color density of fabric specimens depends on
which of four different dye amounts is used



Analysis of Variance

Analysis of variance (ANOVA) is a statistical method used to compare the
subpopulations of a factor.

I If there is one factor, it is called one-way ANOVA or single-factor ANOVA.

I If there is one factor with two levels, the ANOVA should be similar to a
two-sample test.

I All examples in the previous slide are one-way ANOVA.

I If there are two (or more) factors, it is called two-way ANOVA (or multi-factor
ANOVA).

I Example of two-way ANOVA:
An experiment to study the effects of two factors, temperature and humidity, on
the growth of a certain type of bacteria.
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One-way ANOVA — Notations

I I: the number of levels of the factor.

I µi, i = 1, . . . , I: the population mean of the ith level of the factor.

I The relevant hypotheses:

H0 : µ1 = µ2 = · · · = µI

Ha : At least one of the means is different

I In experimental design, the ith level of the factor is often called a treatment.

I Xij is the jth observation in the ith treatment.

I xij is the value of Xij when the experiment is conducted.
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Example

Compress strength of different types of boxes.



Different Means
Let Xij be the j-th observation in the i-th treatment.

Suppose each treatment level has J observations. Then the total number of
observations is I × J .

I The sample mean of the i-th treatment is

X̄i· =
1

J

J∑
j=1

Xij

I The sample mean of all observations (grand mean) is

X̄·· =
1

IJ

I∑
i=1

J∑
j=1

Xij

I Q: what if we have unequal number of observations in each treatment?
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Sum of Squares

I The Sum of Squares Error (SSE) is

SSE =

I∑
i=1

J∑
j=1

(Xij − X̄i·)
2

I The Sum of Squares Treatment (SSTr) is

SSTr = J

I∑
i=1

(X̄i· − X̄··)
2

I The Sum of Squares Total (SST or SSTo) is

SST =

I∑
i=1

J∑
j=1

(Xij − X̄··)
2



Sum of Squares

I The Sum of Squares Error (SSE) is

SSE =

I∑
i=1

J∑
j=1

(Xij − X̄i·)
2

I The Sum of Squares Treatment (SSTr) is

SSTr = J

I∑
i=1

(X̄i· − X̄··)
2

I The Sum of Squares Total (SST or SSTo) is

SST =

I∑
i=1

J∑
j=1

(Xij − X̄··)
2



Sum of Squares

I The Sum of Squares Error (SSE) is

SSE =

I∑
i=1

J∑
j=1

(Xij − X̄i·)
2

I The Sum of Squares Treatment (SSTr) is

SSTr = J

I∑
i=1

(X̄i· − X̄··)
2

I The Sum of Squares Total (SST or SSTo) is

SST =

I∑
i=1

J∑
j=1

(Xij − X̄··)
2



Sum of Squares

The relationship between SST, SSTr, and SSE:

SST = SSTr + SSE

Q: what if we have unequal number of observations in each treatment?
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Mean Sqaures

The mean sqaures are the sum of squares divided by the degrees of freedom.

MSX =
SSX

degrees of freedom

The degrees of freedom (df) can be calculated as

df = number of observations− number of parameters
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Mean Sqaures

I The Mean Square Error (MSE) is
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Nested Models

H0 : µ1 = µ2 = · · · = µI v.s. Ha : not all equal

I The full model is the model with all the treatment means different. (i.e.
H0 ∪Ha)
The estimators are

µ̂i = X̄i· for i = 1, . . . , I.

I The reduced model is the model with all the treatment means equal. (i.e. H0)
The estimator is

µ̂i = µ̂ = X̄·· for i = 1, . . . , I.

I The two models are nested because the reduced model is a special case of the full
model.
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Nested Models
The sum of squared error for the full model is

SSEfull =

I∑
i=1

J∑
j=1

(Xij − µ̂i)2 =

I∑
i=1

J∑
j=1

(Xij − X̄i·)
2 = SSE

The sum of squared error for the reduced model is

SSEreduced =
I∑
i=1

J∑
j=1

(Xij − µ̂i)2 =
I∑
i=1

J∑
j=1

(Xij − X̄··)
2 = SST

I The extra sum of squares is

SSEreduced − SSEfull = SST − SSE = SSTr

I The full model uses I − 1 more parameters than the reduced model.

I The full model improves the fit by SSTr.
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Nested Models

For the full model:

I Sum of squared error is SSE with IJ − I degrees of freedom.

I Sum of squares fitted is SSTr with I − 1 degrees of freedom.

I Sum of squares total is SST with IJ − 1 degrees of freedom.

For the reduced model:

I Sum of squared error is SST with IJ − 1 degrees of freedom.

I Sum of squares fitted is 0 with 0 degrees of freedom.

I Sum of squares total is SST with IJ − 1 degrees of freedom.



F-Test for Nested Models

In order to test the nested model hypothesis:

H0 : reduced model is true v.s. Ha : full model is true

We consider the following F-statistic:

F =
(SSEreduced − SSEfull)/difference in d.f.

SSEfull/residual d.f. of full model

Large F-statistic suggests that the increase in fit is significant by considering the full
model.

We reject null hypothesis if F is large enough.
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F-Test for One-way ANOVA

In order to test the hypothesis

H0 : µ1 = µ2 = · · · = µI v.s. Ha : not all equal

We consider the following F-statistic:

F =
MSTr

MSE
=
SSTr/(I − 1)

SSE/(IJ − I)

Intuition:

I The numerator measures the variability between the treatment means.

I The denominator measures the variability within the treatments.

I A large F-statistic suggests that the treatment means are different.
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F-Test for One-way ANOVA

Under the following assumptions:

I The observations are independent.

I The populations are normally distributed.

I The populations have the same variance.

The F-statistic follows an F-distribution with I − 1 and IJ − I degrees of freedom,
denoted by FI−1,IJ−I .

The decision rule is

I Reject H0 if F > Fα,I−1,IJ−I .

I Fail to reject H0 if F ≤ Fα,I−1,IJ−I .

I The p-value is P (F > Fobs).

I The critical value is Fα,I−1,IJ−I .
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Background — Chi Square (χ2) Distribution
I If Z1, Z2, . . . , Zk are independent standard normal random variables, then the sum

of their squares
Q = Z2

1 + Z2
2 + · · ·+ Z2

k

follows a χ2 distribution with k degrees of freedom, denoted by χ2
k.

I The χ2 distribution is supported on [0,∞).
I Mean and variance:

E(Q) = k, Var(Q) = 2k
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Background — Chi Square (χ2) Distribution
I If Q1 ∼ χ2

k1
and Q2 ∼ χ2

k2
are independent, then

Q = Q1 +Q2 ∼ χ2
k1+k2

I If X1, X2, . . . , Xk ∼ N(0, 1), then

k∑
i=1

(Xi − X̄)2 ∼ χ2
k−1 with X̄ =

1

k

k∑
i=1

Xi

I If X1, X2, . . . , Xk ∼ N(µ, 1), then

k∑
i=1

(Xi − X̄)2 ∼ χ2
k−1.

I If X1, X2, . . . , Xk ∼ N(µ, σ2), then

k∑
i=1

(Xi − X̄)2 ∼ σ2 · χ2
k−1.
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Background — F Distribution
I If Q1 ∼ χ2

k1
and Q2 ∼ χ2

k2
are independent, then

F =
Q1/k1
Q2/k2

follows an F-distribution with k1 and k2 degrees of freedom, denoted by Fk1,k2 .

I The F-distribution is supported on [0,∞).
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F Distribution in ANOVA

Our assumption is that Xij ∼ N(µi, σ
2) for all i and j.

One the ond hand,
J∑
j=1

(Xij − X̄i·)
2 ∼ σ2 · χ2

J−1

Therefore,

SSE =
I∑
i=1

J∑
j=1

(Xij − X̄i·)
2 ∼ σ2χ2

IJ−I
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F Distribution in ANOVA

Our assumption is that Xij ∼ N(µi, σ
2) for all i and j.

On the other hand,
X̄i· ∼ N(µi, σ

2/J).

Therefore, under null hypothesis (µi = µ for all i),

I∑
i=1

(X̄i· − X̄··)
2 ∼ σ2
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Then
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F Distribution in ANOVA

Recall our previous results:

I SSE ∼ σ2 · χ2
IJ−I .

I SSTr ∼ σ2 · χ2
I−1 under null hypothesis.

Given that SSE and SSTr are independent (beyond the scope),
we have, under null hypothesis,

F =
MSTr

MSE
=
SSTr/(I − 1)

SSE/(IJ − I)
∼

χ2
I−1/(I − 1)

χ2
IJ−I/(IJ − I)

∼ FI−1,IJ−I .
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F Distribution in ANOVA

Under null hypothesis,

I Because SSE ∼ σ2 · χ2
IJ−I , we have

E(SSE) = (IJ − I)σ2, E(MSE) = σ2.

I Because SSTr ∼ σ2 · χ2
I−1, we have

E(SSTr) = (I − 1)σ2, E(MSTr) = σ2.

Under alternative hypothesis,

I We still have
E(SSE) = (IJ − I)σ2, E(MSE) = σ2.

I But for SSTr, we have

E(SSTr) > (I − 1)σ2, E(MSTr) > σ2.
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