We will use the Sepal.Length
column from the
iris
dataset in R.
x = iris$Sepal.Length
print(c(mean(x), sd(x)))
## [1] 5.8433333 0.8280661
The sample mean is 5.84 and the sample standard deviation is 0.828.
We suppose the population distribution for the sepal length is normal with unknown mean \(\mu\) and known standard deviation \(0.8\) for simplicity.
Consider the hypothesis testing: \[H_0: \mu = 6\quad\text{ v.s. }\quad H_a:\mu\neq 6\]
We first compute the Z statistic, whose value is computed as -2.398 below.
sigma = 0.8 #known population s.d.
xbar = mean(x) # sample mean
n = length(x) # sample size
mu0 = 6 # null hypothesis
z = (xbar - mu0) / (sigma / sqrt(n)) # z statistic
print(z)
## [1] -2.398459
Then we compute the p-value, which is 0.016 < 0.05.
p.value = 2 * (1 - pnorm(abs(z)))
print(p.value)
## [1] 0.01646423
Therefore, we reject the null with significance level 0.05.
z.test
functionThe z.test
function is from BSDA
library.
library(BSDA)
## Loading required package: lattice
##
## Attaching package: 'BSDA'
## The following object is masked from 'package:datasets':
##
## Orange
test = z.test(x, alternative="two.sided", mu=6,sigma.x = sigma, conf.level=0.95)
print(test)
##
## One-sample z-Test
##
## data: x
## z = -2.3985, p-value = 0.01646
## alternative hypothesis: true mean is not equal to 6
## 95 percent confidence interval:
## 5.715309 5.971358
## sample estimates:
## mean of x
## 5.843333
The output of the Z test gives the confidence interval of the population mean, which dose not include the null hypothesis. Also, the p-value is computed. So we reject the null.
We first define the power function for the two-sided Z-test for true mean 5.8
z.power <- function(n){
z.quan = qnorm(0.975) #1.96
z = (5.8 - 6) / (sigma / sqrt(n))
return(pnorm(-z.quan-z) + pnorm(-z.quan+z))
}
For example, the power with 100 samples is
z.power(100)
## [1] 0.705418
To find the minimum sample size to ensure a power of 0.8 at \(\mu=5.8\), we compute
obj <- function(n){ z.power(n) - 0.8}
out = uniroot(obj, c(1, 1000))
print(out)
## $root
## [1] 125.5818
##
## $f.root
## [1] 1.054094e-09
##
## $iter
## [1] 10
##
## $init.it
## [1] NA
##
## $estim.prec
## [1] 6.103516e-05
Therefore, the minimum sample size is 126.
Or, we can compute it by the approximated value below.
n.size = ceiling((sigma * (qnorm(0.025) - qnorm(0.8)) / (5.8 - 6) ) ** 2)
print(n.size)
## [1] 126
Now we consider the following test: \[H_0: \mu = 6\quad\text{ v.s. }\quad H_a:\mu < 6\]
We will reuse the Z-statistic we computed before. We adjust the p-value to the new hypothesis testing.
p.value.new = pnorm(z)
print(p.value.new)
## [1] 0.008232116
The p-value is 0.008 < 0.05. So we reject the null.
z.test
functionWe call the z.test
function from BSDA
library.
test.new = z.test(x, alternative="less", mu=6,sigma.x = sigma, conf.level=0.95)
print(test.new)
##
## One-sample z-Test
##
## data: x
## z = -2.3985, p-value = 0.008232
## alternative hypothesis: true mean is less than 6
## 95 percent confidence interval:
## NA 5.950775
## sample estimates:
## mean of x
## 5.843333
It gives the same p-value and same conclusion — reject null.
Now we define the power function for one-sided Z-test.
z.power.oneside <- function(n){
return(pnorm(-qnorm(0.95) - (5.8-6)/(sigma/sqrt(n))))
}
z.power.oneside(100)
## [1] 0.8037649
The power of 100 samples at \(\mu=5.8\) is 0.803.
We use the closed-form to find the minimum sample size for a true mean of \(5.8\) to be tested with power 0.8.
n.oneside = ceiling((sigma * (qnorm(0.95) - qnorm(0.2)) / (5.8 - 6.0))**2)
print(n.oneside)
## [1] 99
The minimum sample size for one-sided Z-test is 99.