STAT 423/523 Statistical Methods for Engineers and Scientists

Lecture 3: Point Estimation II

Chencheng Cai

Washington State University

We have discussed the definitions and properties of the estimators. Now we introduce some methods to construct point estimators:

- Method of Moments (MoM)
- Maximum Likelihood Estimation (MLE)

Method of Moments (MoM)

Definition (Moments)

Let X_1, \ldots, X_n be a random sample from a population with pmf or pdf f(x). For $k = 1, 2, \ldots$, the **kth population moment** or **kth moment of the distribution** f(x), is $E(X^k)$. The **kth sample moment** is

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}.$$

- kth moment of a distribution is the expected value of X^k .
- kth sample moment is the sample average of X^k .
- When $n \to \infty$, the two moments are equal (by Law of Large Numbers).

Method of Moments (MoM)

Let X_1, \ldots, X_n be a random sample from a population with pmf or pdf $f(x; \theta_1, \ldots, \theta_m)$, where $\theta_1, \ldots, \theta_m$ are the unknown parameters we want to estimate.

The **method of moments estimator** of $\theta_1, \ldots, \theta_m$ is the solution to the following system of equations:

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} = E(X) = g_{1}(\theta_{1},\ldots,\theta_{m})$$

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} = E(X^{2}) = g_{2}(\theta_{1},\ldots,\theta_{m})$$

$$\vdots$$

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{m} = E(X^{k}) = g_{m}(\theta_{1},\ldots,\theta_{m})$$

In short: MoM matches the sample moments with the population moments.

Let X_1, \ldots, X_n be a random sample from a population with unknown mean μ and unknown variance σ^2 .

MoM matches the first two moments:

$$\frac{1}{n} \sum_{i=1}^{n} X_i = E(X) = \mu$$
$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = E(X^2) = E(X)^2 + \operatorname{Var}(X) = \mu^2 + \sigma^2$$

The solution, the MoM estimator, is

$$\hat{\mu} = \bar{X}, \quad \hat{\sigma}^2 = \overline{X^2} - (\bar{X})^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2.$$

Example (Textbook 6.13)

Let X_1, \ldots, X_n be a random sample from a Gamma distribution with parameters α and β . The pdf is

$$f(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}.$$

The first two moments of the Gamma distribution are

$$E(X) = \alpha\beta, \quad E(X^2) = \alpha(\alpha+1)\beta^2.$$

The MoM estimator of α and β are the solutions to the following equations:

$$\frac{1}{n}\sum_{i=1}^{n}X_i = E(X) = \alpha\beta$$
$$\frac{1}{n}\sum_{i=1}^{n}X_i^2 = E(X^2) = \alpha(\alpha+1)\beta^2$$

Example (Textbook 6.13)

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} = E(X) = \alpha\beta$$
$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} = E(X^{2}) = \alpha(\alpha+1)\beta^{2}$$

The solutions are

$$\hat{\alpha} = \frac{\bar{X}^2}{\overline{X^2} - \bar{X}^2}$$
$$\hat{\beta} = \frac{\overline{X^2} - \bar{X}^2}{\bar{X}}$$

Method of Moments

- MoM only requires the first few moments of the distribution. (Not the explicit pmf or pdf)
- \blacktriangleright If the first m moments do not give a unique solution, we can use more moments.
- MoM estimator is approximately normal if the sample size is large enough (by CLT).

Maximum Likelihood Estimation (MLE)

Definition (Likelihood Function)

Let X_1, \ldots, X_n be a random sample from a population with pmf or pdf $f(x; \theta_1, \ldots, \theta_m)$. The **likelihood function** is

$$L(\theta_1,\ldots,\theta_m) = \prod_{i=1}^n f(x_i;\theta_1,\ldots,\theta_m).$$

- ▶ The likelihood function is a function of the parameters $\theta_1, \ldots, \theta_m$.
- though it has exactly the same formula as the joint pmf or pdf of the sample.
- In order to compute the likelihood, we need to know the pmf or pdf explicitly. (compare it to MoM)

Important Clarificaitons on Likelihood

- The likelihood function is the probability of observing the sample given the parameters.
- **NOT** the probability of the parameters given the sample.

That is

$$L(\theta_1,\ldots,\theta_m) \neq p(\theta_1,\ldots,\theta_m \mid X_1,\ldots,X_n)$$

The r.h.s. of above is

$$p(\theta_1, \dots, \theta_m \mid X_1, \dots, X_n) = \frac{p(X_1, \dots, X_n \mid \theta_1, \dots, \theta_m) p(\theta_1, \dots, \theta_m)}{p(X_1, \dots, X_n)}$$

but we assume $\theta_1, \ldots, \theta_m$ to be fixed.

Example (Textbook 6.15)

Suppose 10 email accounts are randomly sampled and the 1st, 3rd and 10th accounts are found to have strong passwords. We want to estiamte p: the proportion of email accounts with strong passwords.

Let the random variables X_1, \ldots, X_{10} be the indicator variables for the 10 accounts to have strong passwords.

The likelihood function is

$$L(p) = f(x_1, \dots, x_{10}; p) = p(1-p)p(1-p)\cdots p = p^3(1-p)^7.$$

The logarithm of the likelihood function is called the log-likelihood function:

$$\ell(p) := \log L(p) = 3\log p + 7\log(1-p).$$

Example (Textbook 6.15)

The intuitively best guess of p is the value that maximizes the likelihood function.

Maximum Likelihood Estimation (MLE)

The maximum likelihood estimator of $\theta_1, \ldots, \theta_m$ is the value of $\theta_1, \ldots, \theta_m$ that maximizes the likelihood function $L(\theta_1, \ldots, \theta_m)$.

The log-likelihood function is

$$\ell(\theta_1,\ldots,\theta_m) = \log L(\theta_1,\ldots,\theta_m).$$

In many cases, the MLE of $\theta_1, \ldots, \theta_m$ is the solution to the following system of equations: The MLE of $\theta_1, \ldots, \theta_m$ is the solution to the following system of equations:

$$\frac{\partial \ell}{\partial \theta_1} = 0, \dots, \frac{\partial \ell}{\partial \theta_m} = 0.$$

The first order derivatives are called the **score functions**. The MLE is a zero of the score functions.

Example (Textbook 6.15) Cont.

Continue the example of passwords. The score function is

$$\frac{d\ell(p)}{dp} = \frac{d(3\log p + 7\log(1-p))}{dp} = \frac{3}{p} - \frac{7}{1-p}.$$

The MLE is the solution to

$$\frac{3}{p} - \frac{7}{1-p} = 0.$$

The solution is $\hat{p} = 3/10$.

Let X_1, \ldots, X_n be a random sample from an exponential distribution with parameter $\lambda > 0$. The pdf is

$$f(x;\lambda) = \lambda e^{-\lambda x}.$$

The likelihood function is

$$L(\lambda) = \prod_{i=1}^{n} f(x_i; \lambda) = \lambda^n e^{-\lambda \sum_{i=1}^{n} X_i}.$$

The log-likelihood function is

$$\ell(\lambda) = n \log \lambda - \lambda \sum_{i=1}^{n} X_i.$$

The score function is

$$\frac{d\ell(\lambda)}{d\lambda} = \frac{n}{\lambda} - \sum_{i=1}^{n} X_i.$$

The MLE is the solution to

$$\frac{n}{\lambda} - \sum_{i=1}^{n} X_i = 0.$$

The solution is $\hat{\lambda} = n / \sum_{i=1}^{n} X_i = 1 / \bar{X}$.

• $\hat{\lambda}$ is biased because (Jensen's inequality)

$$E\left(\frac{1}{\bar{X}}\right) > \frac{1}{E(\bar{X})} = \lambda.$$

• The MoM estimator for λ is $\hat{\lambda} = 1/\bar{X}$ as well (based on the first moment).

Let X_1, \ldots, X_n be a random sample from a normal distribution with unknown mean μ and unknown variance σ^2 . The likelihood function is

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(X_i - \mu)^2}{2\sigma^2}\right) = \frac{1}{(2\pi)^{n/2} (\sigma^2)^{n/2}} \exp\left(-\frac{\sum_{i=1}^n (X_i - \mu)^2}{2\sigma^2}\right)$$

The log-likelihood function is

$$\ell(\mu, \sigma^2) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n (X_i - \mu)^2.$$

The score functions are

$$\frac{\partial \ell}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu), \quad \frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (X_i - \mu)^2.$$

The MLE is the solution to

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu) = 0, \quad -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (X_i - \mu)^2 = 0.$$

The solution is

$$\hat{\mu} = \bar{X}, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2.$$

The MLE of μ is the sample mean, and the MLE of σ^2 is the sample variance.

 \triangleright $\hat{\sigma}^2$ is biased.

Maximum Likelihood Estimation

- MLE is not unique. (The likelihood function may have multiple maxima.)
- MLE is not always the solution to the score functions. (The score functions may not have zeros.)
- When the sample size is large enough and the MLE is a zero of the score functions, the MLE is approximately normal (by CLT).
- When the sample size is large enough, the MLE is approximately unbiased (by Law of Large Numbers).
- When the sample size is large enough, the MLE is approximately efficient (with smallest variance).
- MLE is transformation invariant. (If $\hat{\theta}$ is the MLE of θ , then $\phi(\hat{\theta})$ is the MLE of $\phi(\theta)$ for any function ϕ).

Example: Domain-related Distribution

Let X_1, \ldots, X_n be a random sample from a uniform distribution on the interval $[0, \theta]$. The pdf is

$$f(x;\theta) = \frac{1}{\theta} I(0 \le x \le \theta).$$

The likelihood function is

$$L(\theta) = \frac{1}{\theta^n} I(\max(X_1, \dots, X_n) \le \theta).$$

The likelhood function is monotone decreasing in $\theta > X_{max}$. The MLE is $\hat{\theta} = X_{max}$. $\hat{\theta}$ is biased. (because $E(X_{max}) < \theta$) $\hat{\theta}$ is not approximately normal.

Example: Domain-related Distribution

If we consider MoM for the same problem. The MoM estimator is the solution to

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}=E(X)=\frac{\theta}{2}.$$

The MoM estimator is $\hat{\theta} = 2\bar{X}$.

- \triangleright $\hat{\theta}$ is unbiased.
- > When the sample size is large enough, $\hat{\theta}$ is approximately normal.
- However, it could happen that $\hat{\theta} < X_{max}$.

- The point estimation gives a single number as the estimate of the parameter.
- The performance of the point estimator is measured by the bias, variance, and mean squared error.
- However, the bias, variance and mean squared error could depend on the true value of the parameter, and are therefore not always informative.
- The point estimator lacks a probabilistic statement about the uncertainty of the estimate.

Confidence Interval

A confidence interval (CI) for an univariate parameter θ is an interval [L,U] such that

$$P(L \le \theta \le U) = 1 - \alpha,$$

where α is the significance level and $1 - \alpha$ is the confidence level.

- Given confidence level 1α , the confidence interval is not unique.
- When there are multiple parameters, the confidence interval becomes a confidence region.
- ▶ The interval can be closed, open or half-open.
- A common value for α is 0.05, which corresponds to the 95% confidence level.
- A conservative confidence interval satisfies

$$P(L \le \theta \le U) \ge 1 - \alpha.$$

It usually happens for discrete parameters.

Confidence Interval Interpretation

```
The event L \leq \theta \leq U is the same as \theta \in [L, U].
```

In our setting,

- \blacktriangleright θ is the **fixed** unknown parameter.
- \blacktriangleright L and U are constructed from the sample, and therefore are **random** variables.

Interpretation:

- The confidence interval [L, U] is a random interval that contains the true parameter θ with probability 1α .
- ▶ If we repeat the experiment many times, in expectation, $(1 \alpha) \times 100\%$ of the confidence intervals will contain the true parameter.

Confidence Interval Interpretation

Confidence Interval for the Population Mean

Proposition

Let X_1, \ldots, X_n be a random sample from a normal distributed population with mean μ and variance σ^2 . The 95% confidence interval for μ is

$$\left(ar{X}-1.96\cdotrac{\sigma}{\sqrt{n}},\quadar{X}+1.96\cdotrac{\sigma}{\sqrt{n}}
ight).$$

- ▶ The 1.96 is the 97.5 percentile of the standard normal distribution.
- The 95% confidence interval is symmetric around the sample mean \bar{X} .
- The confidence interval is exact. (No approximation is involved.)
- The confidence interval requires that σ is known.

Justification

We now verify the proposition.

Step 1: Because the population is normal, the sample mean \bar{X} is normal as well:

$$\bar{X} \sim N(\mu, \sigma^2/n)$$

Step 2: normalize the event:

$$\left\{ \bar{X} - 1.96 \cdot \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + 1.96 \cdot \frac{\sigma}{\sqrt{n}} \right\} = \left\{ -1.96 < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < 1.96 \right\},\$$

we can define $Z=(\bar{X}-\mu)/(\sigma/\sqrt{n}).$

Step 3: from Step 1, we know $Z \sim N(0, 1)$. Therefore,

$$P(-1.96 < Z < 1.96) = \Phi(1.96) - \Phi(-1.96) = 0.95,$$

where Φ is the cdf of the standard normal distribution.

Generalization

In Step 1, we used the normal assumption for the population.

- \bar{X} is NOT normal if the population is not normal.
- **b** By CLT, for large n, \bar{X} is approximately normal.

Proposition

Let X_1, \ldots, X_n be a random sample from a population with mean μ and variance σ^2 . The **approximate** 95% confidence interval for μ is

$$\left(ar{X} - 1.96 \cdot rac{\sigma}{\sqrt{n}}, \quad ar{X} + 1.96 \cdot rac{\sigma}{\sqrt{n}}
ight).$$

Generalization

In Step 2, we find a transformation of the data

$$Z := \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1),$$

whose distribution does not depend on the parameters.

We call such transformation of the data the pivot or standardized statistic.

The pivot is extremely useful in constructing confidence intervals.

Generalization

In Step 3, we find the quantiles of the pivot to ensure the coverage probability: that is, -1.96 and 1.96 are selected such that

P(-1.96 < Z < 1.96) = 0.95.

For an arbitrary confidence level 1 − α, we need to find z_{α/2}, which is the quantiles for the standard normal:

$$P(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 - \alpha.$$

The 1 – α confidence interval is not necessarily symmetric. That is

$$P(-z_{\beta} < Z < z_{\alpha-\beta}) = 1 - \alpha,$$

for any choice of $\beta \in (0, \alpha)$.

But the symmetric one has the shortest length.

Figure 7.4 $P(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 - \alpha$

Confidnece Interval for Population Mean (Generalized)

Proposition

Let X_1, \ldots, X_n be a random sample from a population with mean μ and variance σ^2 . The approximate $100(1 - \alpha)\%$ confidence interval for μ is

$$\left(ar{X} - z_{lpha/2} \cdot rac{\hat{\sigma}}{\sqrt{n}}, \quad ar{X} + z_{lpha/2} \cdot rac{\hat{\sigma}}{\sqrt{n}}
ight),$$

where

$$\hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

is the sample standard deviation, and $z_{\alpha/2}$ is the $\alpha/2$ quantile of the standard normal distribution.

Pivot Trick Example

Let X_1, \ldots, X_n be a random sample from a population distributed as $N(0, \sigma^2)$. We would like to construct a 95% confidence interval for σ .

• Notice that
$$\bar{X} \sim N(0, \sigma^2/n)$$
.

► Therefore,

$$Z = \frac{\bar{X}}{\sigma/\sqrt{n}} \sim |N(0,1)|,$$

is a pivot.

• The 95% confidence interval for σ is

$$\{0 < Z < 1.96\} = \left\{\frac{\sqrt{n}\bar{X}}{1.96} < \sigma < \infty\right\}.$$

The CLT Trick Example

The CLT is used to give approximate CI for the population mean without a normal assumption.

Let X_1, \ldots, X_n be Bernoulli random variables with success probability p.

 \blacktriangleright The sample mean \bar{X} is approximately normal by CLT:

 $\bar{X} \approx N(p, p(1-p)/n).$

 \blacktriangleright The 95% confidence interval for p is

$$\left(\bar{X} - 1.96 \cdot \sqrt{\frac{\bar{X}(1-\bar{X})}{n}}, \bar{X} + 1.96 \cdot \sqrt{\frac{\bar{X}(1-\bar{X})}{n}}\right)$$

.

Remark: Textbook uses a more refined CI for the success probability, which is more complicated.

Exact Confidence Interval for Normal

- ▶ In our CI for the normal population mean, we assume that the population variance σ^2 is known.
- If σ^2 is unknown, we use the sample variance $\hat{\sigma}^2$ instead. This is called the **plug-in** method.
- ▶ The plug-in method is not exact. The CI is only approximately valid.
- In order to construct an exact CI for normal population mean, we need to investigate the exact distribution of

$$\frac{\bar{X}-\mu}{S/\sqrt{n}},$$

where S is the sample standard deviation.

t-distribution

Let X_1, \ldots, X_n be a random sample from a normal distribution with mean μ and variance σ^2 . The random variable

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

follows a **t-distribution** with n-1 degrees of freedom.

- ▶ The t-distribution is symmetric and bell-shaped.
- ▶ The t-distribution has heavier tails than the standard normal distribution.
- The t-distribution converges to the standard normal distribution as $n \to \infty$.

t-distribution

Exact Confidence Interval for Normal

Notice that T is a pivot. Let $t_{\alpha/2,n-1}$ be the $\alpha/2$ quantile of the t-distribution with n-1 degrees of freedom. Then

$$\{-t_{\alpha/2,n-1} < T < t_{\alpha/2,n-1}\} = \left\{\bar{X} - t_{\alpha/2,n-1}\frac{S}{\sqrt{n}} < \mu < \bar{X} + t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}\right\}$$

The exact CI for μ is

$$\left(\bar{X} - t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}, \bar{X} + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}\right).$$

Exact Confidence Interval for Normal

Proposition

Let X_1, \ldots, X_n be a random sample from a normal distributed population with mean μ and variance σ^2 . The $100(1 - \alpha)\%$ confidence interval for μ is

$$\left(\bar{X} - t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}, \bar{X} + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}\right),\,$$

where $t_{\alpha/2,n-1}$ is the $\alpha/2$ quantile of the t-distribution with n-1 degrees of freedom and S is the sample standard deviation.

Steps in A Scientific Research

- 1. \checkmark Define the research question. (Your supervisor's job)
- 2. \checkmark Design the experiments. (not in this course)
- 3. ✓ Collect the data. (Your job)
- 4. 4. Probabilistic modeling (Prerequisites)
- 5. Statistical Inference (this lecture)
 - 5.1 ✓ Point estimation
 - 5.2 🗸 Confidence interval
- 6. Draw conclusions / Hypothesis Testing (Next lecture)