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Methods of Point Estimation

We have discussed the definitions and properties of the estimators.

Now we introduce some methods to construct point estimators:

I Method of Moments (MoM)

I Maximum Likelihood Estimation (MLE)
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Method of Moments (MoM)

Definition (Moments)

Let X1, . . . , Xn be a random sample from a population with pmf or pdf f(x). For
k = 1, 2, . . . , the kth population moment or kth moment of the distribution f(x),
is E(Xk). The kth sample moment is

1

n

n∑
i=1

Xk
i .

I kth moment of a distribution is the expected value of Xk.

I kth sample moment is the sample average of Xk.

I When n→∞, the two moments are equal (by Law of Large Numbers).
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Method of Moments (MoM)
Let X1, . . . , Xn be a random sample from a population with pmf or pdf
f(x; θ1, . . . , θm), where θ1, . . . , θm are the unknown parameters we want to estimate.

The method of moments estimator of θ1, . . . , θm is the solution to the following
system of equations:

1

n

n∑
i=1

Xi = E(X) = g1(θ1, . . . , θm)

1

n

n∑
i=1

X2
i = E(X2) = g2(θ1, . . . , θm)

...

1

n

n∑
i=1

Xm
i = E(Xk) = gm(θ1, . . . , θm)

In short: MoM matches the sample moments with the population moments.
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Example

Let X1, . . . , Xn be a random sample from a population with unknown mean µ and
unknown variance σ2.

MoM matches the first two moments:

1

n

n∑
i=1

Xi = E(X) = µ

1

n

n∑
i=1

X2
i = E(X2) = E(X)2 + Var(X) = µ2 + σ2

The solution, the MoM estimator, is

µ̂ = X̄, σ̂2 = X2 − (X̄)2 =
1

n

n∑
i=1

(Xi − X̄)2.
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Example (Textbook 6.13)

Let X1, . . . , Xn be a random sample from a Gamma distribution with parameters α
and β. The pdf is

f(x;α, β) =
1

Γ(α)βα
xα−1e−x/β.

The first two moments of the Gamma distribution are

E(X) = αβ, E(X2) = α(α+ 1)β2.

The MoM estimator of α and β are the solutions to the following equations:

1

n

n∑
i=1

Xi = E(X) = αβ

1

n

n∑
i=1

X2
i = E(X2) = α(α+ 1)β2
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Example (Textbook 6.13)

1

n

n∑
i=1

Xi = E(X) = αβ

1
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n∑
i=1

X2
i = E(X2) = α(α+ 1)β2

The solutions are

α̂ =
X̄2

X2 − X̄2

β̂ =
X2 − X̄2
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Method of Moments

I MoM only requires the first few moments of the distribution. (Not the explicit
pmf or pdf)

I If the first m moments do not give a unique solution, we can use more moments.

I MoM estimator is approximately normal if the sample size is large enough (by
CLT).



Maximum Likelihood Estimation (MLE)

Definition (Likelihood Function)

Let X1, . . . , Xn be a random sample from a population with pmf or pdf
f(x; θ1, . . . , θm). The likelihood function is

L(θ1, . . . , θm) =

n∏
i=1

f(xi; θ1, . . . , θm).

I The likelihood function is a function of the parameters θ1, . . . , θm.

I though it has exactly the same formula as the joint pmf or pdf of the sample.

I In order to compute the likelihood, we need to know the pmf or pdf explicitly.
(compare it to MoM)
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Important Clarificaitons on Likelihood

I The likelihood function is the probability of observing the sample given the
parameters.

I NOT the probability of the parameters given the sample.

I That is
L(θ1, . . . , θm) 6= p(θ1, . . . , θm | X1, . . . , Xn)

I The r.h.s. of above is

p(θ1, . . . , θm | X1, . . . , Xn) =
p(X1, . . . , Xn | θ1, . . . , θm)p(θ1, . . . , θm)

p(X1, . . . , Xn)

but we assume θ1, . . . , θm to be fixed.
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Example (Textbook 6.15)

Suppose 10 email accounts are randomly sampled and the 1st, 3rd and 10th accounts
are found to have strong passwords. We want to estiamte p: the proportion of email
accounts with strong passwords.

Let the random variables X1, . . . , X10 be the indicator variables for the 10 accounts to
have strong passwords.

The likelihood function is

L(p) = f(x1, . . . , x10; p) = p(1− p)p(1− p) · · · p = p3(1− p)7.

The logarithm of the likelihood function is called the log-likelihood function:

`(p) := logL(p) = 3 log p+ 7 log(1− p).



Example (Textbook 6.15)

Suppose 10 email accounts are randomly sampled and the 1st, 3rd and 10th accounts
are found to have strong passwords. We want to estiamte p: the proportion of email
accounts with strong passwords.

Let the random variables X1, . . . , X10 be the indicator variables for the 10 accounts to
have strong passwords.

The likelihood function is

L(p) = f(x1, . . . , x10; p) = p(1− p)p(1− p) · · · p = p3(1− p)7.

The logarithm of the likelihood function is called the log-likelihood function:

`(p) := logL(p) = 3 log p+ 7 log(1− p).



Example (Textbook 6.15)

Suppose 10 email accounts are randomly sampled and the 1st, 3rd and 10th accounts
are found to have strong passwords. We want to estiamte p: the proportion of email
accounts with strong passwords.

Let the random variables X1, . . . , X10 be the indicator variables for the 10 accounts to
have strong passwords.

The likelihood function is

L(p) = f(x1, . . . , x10; p) = p(1− p)p(1− p) · · · p = p3(1− p)7.

The logarithm of the likelihood function is called the log-likelihood function:

`(p) := logL(p) = 3 log p+ 7 log(1− p).



Example (Textbook 6.15)

Suppose 10 email accounts are randomly sampled and the 1st, 3rd and 10th accounts
are found to have strong passwords. We want to estiamte p: the proportion of email
accounts with strong passwords.

Let the random variables X1, . . . , X10 be the indicator variables for the 10 accounts to
have strong passwords.

The likelihood function is

L(p) = f(x1, . . . , x10; p) = p(1− p)p(1− p) · · · p = p3(1− p)7.

The logarithm of the likelihood function is called the log-likelihood function:

`(p) := logL(p) = 3 log p+ 7 log(1− p).



Example (Textbook 6.15)

The intuitively best guess of p is the value that maximizes the likelihood function.



Maximum Likelihood Estimation (MLE)

The maximum likelihood estimator of θ1, . . . , θm is the value of θ1, . . . , θm that
maximizes the likelihood function L(θ1, . . . , θm).

The log-likelihood function is

`(θ1, . . . , θm) = logL(θ1, . . . , θm).

In many cases, the MLE of θ1, . . . , θm is the solution to the following system of
equations: The MLE of θ1, . . . , θm is the solution to the following system of equations:

∂`

∂θ1
= 0, . . . ,

∂`

∂θm
= 0.

The first order derivatives are called the score functions. The MLE is a zero of the
score functions.
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Example (Textbook 6.15) Cont.

Continue the example of passwords. The score function is

d`(p)

dp
=
d(3 log p+ 7 log(1− p))

dp
=

3

p
− 7

1− p
.

The MLE is the solution to
3

p
− 7

1− p
= 0.

The solution is p̂ = 3/10.
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Example
Let X1, . . . , Xn be a random sample from an exponential distribution with parameter
λ > 0. The pdf is

f(x;λ) = λe−λx.

The likelihood function is

L(λ) =
n∏
i=1

f(xi;λ) = λne−λ
∑n

i=1Xi .

The log-likelihood function is

`(λ) = n log λ− λ
n∑
i=1

Xi.

The score function is
d`(λ)

dλ
=
n

λ
−

n∑
i=1

Xi.
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Example

The MLE is the solution to
n

λ
−

n∑
i=1

Xi = 0.

The solution is λ̂ = n/
∑n

i=1Xi = 1/X̄.

I λ̂ is biased because (Jensen’s inequality)

E

(
1

X̄

)
>

1

E(X̄)
= λ.

I The MoM estimator for λ is λ̂ = 1/X̄ as well (based on the first moment).
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Example

Let X1, . . . , Xn be a random sample from a normal distribution with unknown mean µ
and unknown variance σ2. The likelihood function is

L(µ, σ2) =

n∏
i=1

1√
2πσ2

exp

(
−(Xi − µ)2

2σ2

)
=

1

(2π)n/2(σ2)n/2
exp

(
−
∑n

i=1(Xi − µ)2

2σ2

)

The log-likelihood function is

`(µ, σ2) = −n
2

log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(Xi − µ)2.

The score functions are

∂`

∂µ
=

1

σ2

n∑
i=1

(Xi − µ),
∂`

∂σ2
= − n

2σ2
+

1

2(σ2)2

n∑
i=1

(Xi − µ)2.
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Example

The MLE is the solution to

1

σ2

n∑
i=1

(Xi − µ) = 0, − n

2σ2
+

1

2(σ2)2

n∑
i=1

(Xi − µ)2 = 0.

The solution is

µ̂ = X̄, σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2.

The MLE of µ is the sample mean, and the MLE of σ2 is the sample variance.

I µ̂ is unbiased.

I σ̂2 is biased.
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Maximum Likelihood Estimation

I MLE is not unique. (The likelihood function may have multiple maxima.)

I MLE is not always the solution to the score functions. (The score functions may
not have zeros.)

I When the sample size is large enough and the MLE is a zero of the score
functions, the MLE is approximately normal (by CLT).

I When the sample size is large enough, the MLE is approximately unbiased (by
Law of Large Numbers).

I When the sample size is large enough, the MLE is approximately efficient (with
smallest variance).

I MLE is transformation invariant. (If θ̂ is the MLE of θ, then φ(θ̂) is the MLE of
φ(θ) for any function φ).



Example: Domain-related Distribution

Let X1, . . . , Xn be a random sample from a uniform distribution on the interval [0, θ].
The pdf is

f(x; θ) =
1

θ
I(0 ≤ x ≤ θ).

The likelihood function is

L(θ) =
1

θn
I(max(X1, . . . , Xn) ≤ θ).

The likelhood function is monotone decreasing in θ > Xmax. The MLE is θ̂ = Xmax.

I θ̂ is biased. (because E(Xmax) < θ)

I When the sample size is large enough, θ̂ is not approximately normal.
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Example: Domain-related Distribution

If we consider MoM for the same problem. The MoM estimator is the solution to

1

n

n∑
i=1

Xi = E(X) =
θ

2
.

The MoM estimator is θ̂ = 2X̄.

I θ̂ is unbiased.

I When the sample size is large enough, θ̂ is approximately normal.

I However, it could happen that θ̂ < Xmax.
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Beyond Point Estimation

I The point estimation gives a single number as the estimate of the parameter.

I The performance of the point estimator is measured by the bias, variance, and
mean squared error.

I However, the bias, variance and mean squared error could depend on the true
value of the parameter, and are therefore not always informative.

I The point estimator lacks a probabilistic statement about the uncertainty of the
estimate.



Confidence Interval
A confidence interval (CI) for an univariate parameter θ is an interval [L,U ] such
that

P (L ≤ θ ≤ U) = 1− α,

where α is the significance level and 1− α is the confidence level.

I Given confidence level 1− α, the confidence interval is not unique.

I When there are multiple parameters, the confidence interval becomes a confidence
region.

I The interval can be closed, open or half-open.

I A common value for α is 0.05, which corresponds to the 95% confidence level.

I A conservative confidence interval satisfies

P (L ≤ θ ≤ U)≥1− α.

It usually happens for discrete parameters.
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Confidence Interval Interpretation

The event L ≤ θ ≤ U is the same as θ ∈ [L,U ].

In our setting,

I θ is the fixed unknown parameter.

I L and U are constructed from the sample, and therefore are random variables.

Interpretation:

I The confidence interval [L,U ] is a random interval that contains the true
parameter θ with probability 1− α.

I If we repeat the experiment many times, in expectation, (1− α)× 100% of the
confidence intervals will contain the true parameter.
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Confidence Interval for the Population Mean

Proposition

Let X1, . . . , Xn be a random sample from a normal distributed population with mean
µ and variance σ2. The 95% confidence interval for µ is(

X̄ − 1.96 · σ√
n
, X̄ + 1.96 · σ√

n

)
.

I The 1.96 is the 97.5 percentile of the standard normal distribution.

I The 95% confidence interval is symmetric around the sample mean X̄.

I The confidence interval is exact. (No approximation is involved.)

I The confidence interval requires that σ is known.



Confidence Interval for the Population Mean

Proposition

Let X1, . . . , Xn be a random sample from a normal distributed population with mean
µ and variance σ2. The 95% confidence interval for µ is(

X̄ − 1.96 · σ√
n
, X̄ + 1.96 · σ√

n

)
.

I The 1.96 is the 97.5 percentile of the standard normal distribution.

I The 95% confidence interval is symmetric around the sample mean X̄.

I The confidence interval is exact. (No approximation is involved.)

I The confidence interval requires that σ is known.



Justification

We now verify the proposition.

I Step 1: Because the population is normal, the sample mean X̄ is normal as well:

X̄ ∼ N(µ, σ2/n)

I Step 2: normalize the event:{
X̄ − 1.96 · σ√

n
< µ < X̄ + 1.96 · σ√

n

}
=

{
−1.96 <

X̄ − µ
σ/
√
n
< 1.96

}
,

we can define Z = (X̄ − µ)/(σ/
√
n).

I Step 3: from Step 1, we know Z ∼ N(0, 1). Therefore,

P (−1.96 < Z < 1.96) = Φ(1.96)− Φ(−1.96) = 0.95,

where Φ is the cdf of the standard normal distribution.
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Generalization

In Step 1, we used the normal assumption for the population.

I X̄ is NOT normal if the population is not normal.

I By CLT, for large n, X̄ is approximately normal.

Proposition

Let X1, . . . , Xn be a random sample from a population with mean µ and variance σ2.
The approximate 95% confidence interval for µ is(

X̄ − 1.96 · σ√
n
, X̄ + 1.96 · σ√

n

)
.
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Generalization

In Step 2, we find a transformation of the data

Z :=
X̄ − µ
σ/
√
n
∼ N(0, 1),

whose distribution does not depend on the parameters.

We call such transformation of the data the pivot or standardized statistic.

The pivot is extremely useful in constructing confidence intervals.
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Generalization
In Step 3, we find the quantiles of the pivot to ensure the coverage probability:
that is, -1.96 and 1.96 are selected such that

P (−1.96 < Z < 1.96) = 0.95.

I For an arbitrary confidence level 1− α, we need to find
zα/2, which is the quantiles for the standard normal:

P (−zα/2 < Z < zα/2) = 1− α.

I The 1− α confidence interval is not necessarily
symmetric. That is

P (−zβ < Z < zα−β) = 1− α,

for any choice of β ∈ (0, α).

I But the symmetric one has the shortest length.
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Confidnece Interval for Population Mean (Generalized)

Proposition

Let X1, . . . , Xn be a random sample from a population with mean µ and variance σ2.
The approximate 100(1− α)% confidence interval for µ is(

X̄ − zα/2 ·
σ̂√
n
, X̄ + zα/2 ·

σ̂√
n

)
,

where

σ̂ =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2

is the sample standard deviation, and zα/2 is the α/2 quantile of the standard normal
distribution.



Pivot Trick Example

Let X1, . . . , Xn be a random sample from a population distributed as N(0, σ2).
We would like to construct a 95% confidence interval for σ.

I Notice that X̄ ∼ N(0, σ2/n).

I Therefore,

Z =
X̄

σ/
√
n
∼ |N(0, 1)|,

is a pivot.

I The 95% confidence interval for σ is

{0 < Z < 1.96} =

{√
nX̄

1.96
< σ <∞

}
.
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The CLT Trick Example

The CLT is used to give approximate CI for the population mean without a normal
assumption.
Let X1, . . . , Xn be Bernoulli random variables with success probability p.

I The sample mean X̄ is approximately normal by CLT:

X̄ ≈ N(p, p(1− p)/n).

I The 95% confidence interval for p is(
X̄ − 1.96 ·

√
X̄(1− X̄)

n
, X̄ + 1.96 ·

√
X̄(1− X̄)

n

)
.

I Remark: Textbook uses a more refined CI for the success probability, which is
more complicated.
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Exact Confidence Interval for Normal

I In our CI for the normal population mean, we assume that the population variance
σ2 is known.

I If σ2 is unknown, we use the sample variance σ̂2 instead. This is called the
plug-in method.

I The plug-in method is not exact. The CI is only approximately valid.

I In order to construct an exact CI for normal population mean, we need to
investigate the exact distribution of

X̄ − µ
S/
√
n
,

where S is the sample standard deviation.
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t-distribution

Let X1, . . . , Xn be a random sample from a normal distribution with mean µ and
variance σ2. The random variable

T =
X̄ − µ
S/
√
n

follows a t-distribution with n− 1 degrees of freedom.

I The t-distribution is symmetric and bell-shaped.

I The t-distribution has heavier tails than the standard normal distribution.

I The t-distribution converges to the standard normal distribution as n→∞.
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Exact Confidence Interval for Normal

Notice that T is a pivot.
Let tα/2,n−1 be the α/2 quantile of the t-distribution with n− 1 degrees of freedom.

Then

{−tα/2,n−1 < T < tα/2,n−1} =

{
X̄ − tα/2,n−1

S√
n
< µ < X̄ + tα/2,n−1

S√
n

}
The exact CI for µ is (

X̄ − tα/2,n−1
S√
n
, X̄ + tα/2,n−1

S√
n

)
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Exact Confidence Interval for Normal

Proposition

Let X1, . . . , Xn be a random sample from a normal distributed population with mean
µ and variance σ2. The 100(1− α)% confidence interval for µ is(

X̄ − tα/2,n−1
S√
n
, X̄ + tα/2,n−1

S√
n

)
,

where tα/2,n−1 is the α/2 quantile of the t-distribution with n− 1 degrees of freedom
and S is the sample standard deviation.



Steps in A Scientific Research

1. 3 Define the research question. (Your supervisor’s job)

2. 3 Design the experiments. (not in this course)

3. 3 Collect the data. (Your job)

4. 3 Probabilistic modeling (Prerequisites)

5. Statistical Inference (this lecture)

5.1 3 Point estimation
5.2 3 Confidence interval

6. Draw conclusions / Hypothesis Testing (Next lecture)


