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Sample Mean

Proposition
Let X1,Xo,..., X, be a random sample from a population with mean n and standard
deviation o. Then
> BE(X)=pu
> Var(X) = ";f
In addition, with T = X1 + --- + X,,, we have
> E(T)=nu

» Var(T) = no?

Interpretation:
The sample mean’s expectation is the population mean, and its variance is the
population variance divided by the sample size.



Sample Mean — Concepts

» Population: In statistics, a population is the entire pool from which a statistical
sample is drawn. It is the complete set of individuals or objects that we are
interested in.

» Sample: A sample is a subset of the population. It is the group of individuals or
objects that we actually collect data from.

» Random Sample: A random sample is a sample in which each individual or
object in the population has an equal chance of being selected.

P> An alternative expression is

X1, Xo,..., X, are independent and identically distributed (i.i.d.) random

variables with mean p and variance o2.



Sample Mean — Justification

> By linearity of expectation, we have

ET)=EXi+Xo+ -+ X,,) =E(X))+E(X2)+--+ E(X,) =npu.

> By independence, we have

Var(T) = Var(X1+Xo+ - +X,) = Var(X1)+Var(Xe)+- - -+Var(X,) = no?

» Since X = T'/n, we have

and



Example: Bernoulli and Binomial

Suppose we have an unfair coin whose probability of landing heads is p.
We toss the coin n times and let X; be the indicator of the i-th toss.

» X, = 1 if the ¢-th toss is head
» X, = 0 if the i-th toss is tail

X, follows a Bernoulli distribution with P(X; =1) =p and P(X; =0)=1—p.
> E(XZ‘)Zl-P(Xi:1)+0'P(Xi:0):p
> Var(X;) = B(X?) - [B(X;)]? = E(X;) — [E(X;)]* =p—p* = p(1 - p)



Example: Bernoulli and Binomial

Let T = X1 + X9+ --- + X, be the number of heads from n tosses.

By definition, T" follows a binomial distribution with parameters n and p, denoted as
T ~ Bin(n,p). (number of successes in n independent Bernoulli trials)

From our previous statement:

» E(T)=n-E(X;)=np
» Var(T)=n-Var(X;) = np(l — p)

Similary, let X = T'/n be the proportion of heads from n tosses. Then

> B(X) = B(X;) = p
> Var(X) = Var(X;)/n=p(1 —p)/n



Normal Population Distribution

Proposition

Let X1,Xo,...,X,, be a random sample from a normal distribution with mean 1 and
standard deviation o. Then for any n, X is normally distributed with mean 1 and
variance o /n.

A random variable X is said to have a normal distribution with mean p and variance
o2, denoted by N(u,0?), if its probability density function is given by

]. 2 2
_ ~(z=)2/(20%)
X e .
H@) = Z0=

If X1 ~ N(u1,0%) and Xo ~ N(ug,03) are independent, then

1 X1+ Xy ~ N(cl,ul + CQ,UQ,C%O’% + 0302).



Example

The distribution of egg weights of certian type is normal with mean value 53 and
standard deviation 0.3.
Let X1, Xo,..., X192 be the weights of a dozen randomly selected eggs.
Let T'= X1+ Xo + -+ + X192 be the total weight of the dozen eggs.
E(T) =12 x53 =636, Var(T)=12x 0.3% =1.08.
The probability that the total weight of the dozen eggs is between 635 and 640 is

635 — 636 <7< 640 — 636
v 1.08 v/ 1.08

where Z ~ N(0, 1) follows the standard normal distribution.

P(635 < T < 640) = P < ) = P(—0.96 < Z < 3.85) = 0.8315,



Central Limit Theorem

Theorem (Central Limit Theorem (CLT))

Let X1,Xo,...,X,, be a random sample from a population with mean p and variance
o2, Then if n is sufficiently large, X has approximately a normal distribution with
mean 1 and variance o /n, and T also has approximately a normal distribution with
mean ny and variance no?. The larger the value of n, the better the approximation.

A shorter version:

V(X —p) o, N

0,1) asn— o0
o



Central Limit Theorem

>

>

>

Implicit Assumption: The population distribution has finite mean and finite
variance.

Sequential Interpretation: The CLT applies to a sequence of i.i.d. random
variables.

Reparametrization: When n is large enough, Y = \/n(X — u)/c is
approximately standard normal, where the limit distribution does not depend on n.

Approximation: The approximated distribution should be interpreted that the
cd.f. of Y, P(Y <t), converges to the c.d.f. of N(0,1) as n — oo for any t.

Proof: The proof of the Central Limit Theorem is beyond the scope of this
course. It is a result from the characteristic function and the Lévy’'s convergence
theorem.

Rule of Thumb: n > 30 is often considered as a sufficiently large sample size.



Example

Let Y be a Binomial random variable with parameters n = 100 and p = 0.5.
We want to estimate the probability P(40 <Y < 60).

Recall our discussion on tossing a coin. Let X; be the indicator of the i-th toss.
Then T'= X1 + X9+ - - - + Xqgo follows a Binomial distribution with parameters
n =100 and p =0.5. Thatis, T ~ Y.

From the central limit theorem,

X ~ N(p,p(1 —p)/n) ~ N(0.5,0.0025).

Therefore, T = nX ~ N(50,25).

We have
40 — 50 60 — 50
P40<Y <60)=P(40< T <60)~ P < Z< =P(-2<Z72<?2
( ) = P( )~ (] 20— P )



From Probabilitic Model to Statistical Inference

> Probabilitic Model:
Given the (known) parameters of the population (e.g. mean and variance), we can
model the distribution of the sample.

> Statistical Inference:
Given the sample, we want to estimate the(unknown) parameters of the
population.

Probability

Population

Inferential

statistics



Point Estimation

A point estimate of a parameter 6 is a single number that can be regarded as a
sensible value of 6. It is obtained by selecting a suitable sta tistic and computing its
value from the given sample data. The selected statistic is called the point estimator
of 6.

Terminology:
» Parameter / Estimand: A numerical characteristic of a population.
> Estimator: A function of the sample data used to estimate a parameter.

» Estimate: The value of the estimator computed from the sample data.

Properties:
» Estimand is usually a fixed and unknown value.
» Estimator is a random variable whose value depends on the sample data.

» Estimate is a realization of the estimator.



Example

» An automobile manufacturer has developed a new type of bumper.

» The manufacturer has used this bumper in a sequence of n = 25 controlled
crashes against a wall, each at 10 mph, using one of its compact car models.

» Let X = the number of crashes that result in no visible damage to the automobile.
» The estimand is the probability of no visible damage in a crash, denoted as p.

» The estimator is
X
p=—
n

» If X is observed to be z = 15, the estimate is

:c_15_
n 25

0.6



Example

X = voids filled with asphalt(%) for 52 specimens of a certain type of hot-mix asphalt:

7433 71.07 73.82 7742 7935 8227 7175 78.65 77.19
7469 7725 7484 6090 60.75 7409 6536 67.84 69.97
68.83 75.09 6254 6747 7200 6651 6821 6446 64.34
6493 6733 66.08 6731 7487 6940 70.83 81.73 82.50
79.87 8196 79.51 84.12 80.61 79.89 79.70 78.74 77.28
7997 7509 7438 77.67 8373 80.39 76.90

» Estimand: the variance of the voids filled with asphalt.



Example

» Estimator 1: the sample variance

6'2 _ Z?:l(XZ — X)z

- n—1

» The estimate is

52 Y
52221':1@—1%):41.126
52—1

» Esimator 2:

» The estimate is

52 L =)\2
@ = 2aml @ 0T g



Evaluate an Estimator
Recall 0 is the parameter to be estimated, 0 is an estimator.
» The bias of an estimator @ is defined as

A~

Bias(d) = E(0 — 0) = E(§) — 0.

» The variance of an estimator 6 is defined as
Var(d) = E[(0 — E(9))?] = E(6%) — E(9)%.

» The standard error of an estimator @ is defined as
se(f) = 1/ Var(f).

> The mean squared error (MSE) of an estimator 0 is defined as

MSE(6) = E[(6 — 6)?] = Var(d) + Bias(0)>.



Example

Let X1, Xo,..., X, be a random sample from a population with mean p and variance
o2, We want to estimate /.

» Estimator 1: 4= X;.
Bias: 0, Variance: o2, MSE: ¢2.

» Estimator 2: 4 = 0.
Bias: —u, Variance: 0, MSE: ,u2.

» Estimator 3: i = M - X.

Bias: 0, Variance: "—2, MSE: %2

n
» Estimator 4: i = aX for a constant 0 < a < 1.
Bias: (a — 1)u, Variance: a’® \SE: (1—a)?u?+ aQ%Q.

n




Unbiased Estimator

An estimator with zero bias is called an unbiased estimator. That is, an estimator 0
is unbiased if
E9)=90.

pdf of 6, pdf of 6,

ias of 4, Bias of 6,



Unbiased Estimator

Let X;, Xo,..., X, be a random sample from a population with mean p and variance

o2

Proposition

The sample mean X = n~! >; Xi is an unbiased estimator of the population mean .
That is,

E(X) = p.

The sample variance S* = (n — 1)~1 > ,(X; — X)? is an unbiased estimator of the
population variance o. That is,

E(58%) = o

The proposition also implies n™1 Y~ (X; — X)? is biased for the population variance 2.



Example (textbook Example 6.5)

P Investigation on how contaminant concentration in air related to concentration on
a wafer surface after prolonged exposure.

> Collect data for ¢ = 1,2,...,n = 6 experiments.
» Set X;: DBP concentration in air.

» Observe Y;: DBP concentration on wafer surface after 4 hours.

Wafer DBP

30 °
25

201

15 [ ]

10

5 o,

0 o®

T T T T T T T Air DBP



Example (textbook Example 6.5)
We assume
Yi = ﬁXZ + €,

with €; be the random error term with E(¢) = 0 and Var(e) = o2
Consider the following three estimators:

» Estimator 1:

poly ¥
» Estimator 2:
5o I,
> Xi
» Estimator 3:
B _ Zz XzYz
> X7

All three estimators are unbiased.



Principles in Choosing Estimators

Principle of unbiased Estimation:
When choosing among several different estimators of u, select one that is unbiased.

Principle of Minimum Variance Unbiased Estimation:
Among all estimators of 0 that are unbiased, choose the one that has minimum
variance. The resulting 6 is called the minimum variance unbiased estimator (MVUE)

of 6.



Example (textbook Example 6.5) Cont.

The variances for the three estimators are
» Estimator 1:

Var B o) Z X2

» Estimator 2:

2
~ no
Var(3) = —7___
(3, Xi)?
» Estimator 3: )
. o
Var(ﬁ) = W

The third estimator has the smallest variance among the three.



