STAT 423/523 Statistical Methods for Engineers and Scientists

Lecture 2: Point Estimation I

Chencheng Cai

Washington State University

Sample Mean

Proposition

Let X_1, X_2, \ldots, X_n be a random sample from a population with mean μ and standard deviation σ . Then

• $E(\bar{X}) = \mu$ • $Var(\bar{X}) = \frac{\sigma^2}{n}$ In addition, with $T = X_1 + \dots + X_n$, we have • $E(T) = n\mu$ • $Var(T) = n\sigma^2$

Interpretation:

The sample mean's expectation is the population mean, and its variance is the population variance divided by the sample size.

Sample Mean — Concepts

- Population: In statistics, a population is the entire pool from which a statistical sample is drawn. It is the complete set of individuals or objects that we are interested in.
- Sample: A sample is a subset of the population. It is the group of individuals or objects that we actually collect data from.
- Random Sample: A random sample is a sample in which each individual or object in the population has an equal chance of being selected.
- An alternative expression is

 X_1, X_2, \ldots, X_n are independent and identically distributed (i.i.d.) random variables with mean μ and variance σ^2 .

Sample Mean — Justification

By linearity of expectation, we have

$$E(T) = E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n) = n\mu.$$

▶ By independence, we have

$$Var(T) = Var(X_1 + X_2 + \dots + X_n) = Var(X_1) + Var(X_2) + \dots + Var(X_n) = n\sigma^2$$

▶ Since $\bar{X} = T/n$, we have

$$E(\bar{X}) = E(T/n) = E(T)/n = \mu$$

and

$$Var(\bar{X}) = Var(T/n) = Var(T)/n^2 = \sigma^2/n.$$

Example: Bernoulli and Binomial

Suppose we have an unfair coin whose probability of landing heads is p. We toss the coin n times and let X_i be the indicator of the *i*-th toss.

- ▶ $X_i = 1$ if the *i*-th toss is head
- ▶ $X_i = 0$ if the *i*-th toss is tail

 X_i follows a **Bernoulli distribution** with $P(X_i = 1) = p$ and $P(X_i = 0) = 1 - p$.

•
$$E(X_i) = 1 \cdot P(X_i = 1) + 0 \cdot P(X_i = 0) = p$$

• $Var(X_i) = E(X_i^2) - [E(X_i)]^2 = E(X_i) - [E(X_i)]^2 = p - p^2 = p(1-p)$

Example: Bernoulli and Binomial

Let $T = X_1 + X_2 + \cdots + X_n$ be the number of heads from n tosses. By definition, T follows a **binomial distribution** with parameters n and p, denoted as $T \sim Bin(n, p)$. (number of successes in n independent Bernoulli trials) From our previous statement:

•
$$E(T) = n \cdot E(X_i) = np$$

• $Var(T) = n \cdot Var(X_i) = np(1-p)$

Similary, let $\bar{X} = T/n$ be the proportion of heads from n tosses. Then

•
$$E(\bar{X}) = E(X_i) = p$$

• $Var(\bar{X}) = Var(X_i)/n = p(1-p)/n$

Normal Population Distribution

Proposition

Let X_1, X_2, \ldots, X_n be a random sample from a **normal** distribution with mean μ and standard deviation σ . Then for any n, \overline{X} is normally distributed with mean μ and variance σ^2/n .

A random variable X is said to have a normal distribution with mean μ and variance σ^2 , denoted by $N(\mu, \sigma^2)$, if its probability density function is given by

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}.$$

If $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ are independent, then

$$c_1 X_1 + c_2 X_2 \sim N(c_1 \mu_1 + c_2 \mu_2, c_1^2 \sigma_1^2 + c_2^2 \sigma_2^2).$$

The distribution of egg weights of certian type is normal with mean value 53 and standard deviation 0.3.

Let X_1, X_2, \ldots, X_{12} be the weights of a dozen randomly selected eggs. Let $T = X_1 + X_2 + \cdots + X_{12}$ be the total weight of the dozen eggs.

$$E(T) = 12 \times 53 = 636, \quad Var(T) = 12 \times 0.3^2 = 1.08.$$

The probability that the total weight of the dozen eggs is between 635 and 640 is

$$P(635 < T < 640) = P\left(\frac{635 - 636}{\sqrt{1.08}} < Z < \frac{640 - 636}{\sqrt{1.08}}\right) = P(-0.96 < Z < 3.85) = 0.8315$$

where $Z \sim N(0, 1)$ follows the standard normal distribution.

Central Limit Theorem

Theorem (Central Limit Theorem (CLT))

Let X_1, X_2, \ldots, X_n be a random sample from a population with mean μ and variance σ^2 . Then if n is sufficiently large, \bar{X} has approximately a normal distribution with mean μ and variance σ^2/n , and T also has approximately a normal distribution with mean $n\mu$ and variance $n\sigma^2$. The larger the value of n, the better the approximation.

A shorter version:

$$\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \xrightarrow{\mathcal{D}} N(0,1) \quad \text{as } n \to \infty$$

Central Limit Theorem

- Implicit Assumption: The population distribution has finite mean and finite variance.
- Sequential Interpretation: The CLT applies to a sequence of i.i.d. random variables.
- ▶ **Reparametrization**: When *n* is large enough, $Y = \sqrt{n}(\bar{X} \mu)/\sigma$ is approximately standard normal, where the limit distribution does not depend on *n*.
- ▶ Approximation: The approximated distribution should be interpreted that the c.d.f. of Y, $P(Y \le t)$, converges to the c.d.f. of N(0,1) as $n \to \infty$ for any t.
- Proof: The proof of the Central Limit Theorem is beyond the scope of this course. It is a result from the characteristic function and the Lévy's convergence theorem.
- **•** Rule of Thumb: $n \ge 30$ is often considered as a sufficiently large sample size.

Let Y be a Binomial random variable with parameters n = 100 and p = 0.5. We want to estimate the probability P(40 < Y < 60).

Recall our discussion on tossing a coin. Let X_i be the indicator of the *i*-th toss. Then $T = X_1 + X_2 + \cdots + X_{100}$ follows a Binomial distribution with parameters n = 100 and p = 0.5. That is, $T \sim Y$. From the central limit theorem,

$$\bar{X} \approx N(p, p(1-p)/n) \sim N(0.5, 0.0025).$$

Therefore, $T = n\bar{X} \sim N(50, 25)$. We have

$$P(40 < Y < 60) = P(40 < T < 60) \approx P\left(\frac{40 - 50}{\sqrt{25}} < Z < \frac{60 - 50}{\sqrt{25}}\right) = P(-2 < Z < 2)$$

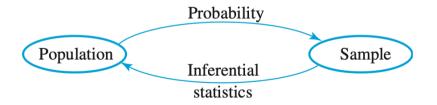
From Probabilitic Model to Statistical Inference

Probabilitic Model:

Given the (known) parameters of the population (e.g. mean and variance), we can model the distribution of the sample.

Statistical Inference:

Given the sample, we want to estimate the(unknown) parameters of the population.



Point Estimation

A **point estimate** of a parameter θ is a single number that can be regarded as a sensible value of θ . It is obtained by selecting a suitable statistic and computing its value from the given sample data. The selected statistic is called the **point estimator** of θ .

Terminology:

- **Parameter / Estimand**: A numerical characteristic of a population.
- **Estimator**: A function of the sample data used to estimate a parameter.
- **Estimate**: The value of the estimator computed from the sample data.

Properties:

- Estimand is usually a fixed and unknown value.
- Estimator is a random variable whose value depends on the sample data.
- Estimate is a realization of the estimator.

- An automobile manufacturer has developed a new type of bumper.
- The manufacturer has used this bumper in a sequence of n = 25 controlled crashes against a wall, each at 10 mph, using one of its compact car models.
- Let X = the number of crashes that result in no visible damage to the automobile.
- ▶ The estimand is the probability of no visible damage in a crash, denoted as *p*.
- The estimator is

$$\hat{p} = \frac{X}{n}$$

• If X is observed to be x = 15, the estimate is

$$\frac{x}{n} = \frac{15}{25} = 0.6$$

X = voids filled with asphalt(%) for 52 specimens of a certain type of hot-mix asphalt:

74.33	71.07	73.82	77.42	79.35	82.27	77.75	78.65	77.19
74.69	77.25	74.84	60.90	60.75	74.09	65.36	67.84	69.97
68.83	75.09	62.54	67.47	72.00	66.51	68.21	64.46	64.34
64.93	67.33	66.08	67.31	74.87	69.40	70.83	81.73	82.50
79.87	81.96	79.51	84.12	80.61	79.89	79.70	78.74	77.28
79.97	75.09	74.38	77.67	83.73	80.39	76.90		

Estimand: the variance of the voids filled with asphalt.

• Estimator 1: the sample variance

$$\hat{\sigma}^2 = rac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$$

$$s^{2} = \frac{\sum_{i=1}^{52} (x_{i} - \bar{x})^{2}}{52 - 1} = 41.126$$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n}$$

The estimate is

$$s^{2} = \frac{\sum_{i=1}^{52} (x_{i} - \bar{x})^{2}}{52} = 40.336$$

Evaluate an Estimator

Recall θ is the parameter to be estimated, $\hat{\theta}$ is an estimator.

• The **bias** of an estimator $\hat{\theta}$ is defined as

$$\operatorname{Bias}(\hat{\theta}) = E(\hat{\theta} - \theta) = E(\hat{\theta}) - \theta.$$

> The **variance** of an estimator $\hat{\theta}$ is defined as

$$\operatorname{Var}(\hat{\theta}) = E[(\hat{\theta} - E(\hat{\theta}))^2] = E(\hat{\theta}^2) - E(\hat{\theta})^2.$$

> The **standard error** of an estimator $\hat{\theta}$ is defined as

$$\operatorname{se}(\hat{\theta}) = \sqrt{\operatorname{Var}(\hat{\theta})}.$$

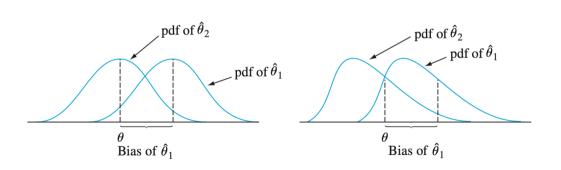
► The mean squared error (MSE) of an estimator $\hat{\theta}$ is defined as $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = Var(\hat{\theta}) + Bias(\hat{\theta})^2.$

Let X_1, X_2, \ldots, X_n be a random sample from a population with mean μ and variance σ^2 . We want to estimate μ .

- Estimator 1: μ̂ = X₁.
 Bias: 0, Variance: σ², MSE: σ².
- Estimator 2: μ̂ = 0. Bias: -μ, Variance: 0, MSE: μ².
 Estimator 3: μ̂ = X₁+X₂+...+X_n/n = X̄. Bias: 0, Variance: σ²/n, MSE: σ²/n.
 Estimator 4: μ̂ = αX̄ for a constant 0 < α < 1. Bias: (α − 1)μ, Variance: α²σ²/n, MSE: (1 − α)²μ² + α²σ²/n.

Unbiased Estimator

An estimator with zero bias is called an **unbiased estimator**. That is, an estimator $\hat{\theta}$ is unbiased if $E(\hat{\theta}) = \theta.$



Unbiased Estimator

Let X_1, X_2, \ldots, X_n be a random sample from a population with mean μ and variance σ^2 .

Proposition

The sample mean $\bar{X} = n^{-1} \sum_i X_i$ is an unbiased estimator of the population mean μ . That is,

$$E(\bar{X}) = \mu.$$

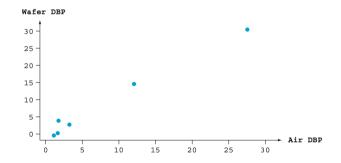
The sample variance $S^2 = (n-1)^{-1} \sum_i (X_i - \bar{X})^2$ is an unbiased estimator of the population variance σ^2 . That is,

$$E(S^2) = \sigma^2$$

The proposition also implies $n^{-1}\sum_i (X_i - \bar{X})^2$ is biased for the population variance σ^2 .

Example (textbook Example 6.5)

- Investigation on how contaminant concentration in air related to concentration on a wafer surface after prolonged exposure.
- Collect data for $i = 1, 2, \ldots, n = 6$ experiments.
- **•** Set X_i : DBP concentration in air.
- Observe Y_i: DBP concentration on wafer surface after 4 hours.



Example (textbook Example 6.5)

We assume

$$Y_i = \beta X_i + \epsilon_i,$$

with ϵ_i be the random error term with $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2$. Consider the following three estimators:

Estimator 1:

$$\hat{\beta} = \frac{1}{n} \sum_{i} \frac{Y_i}{X_i}$$

Estimator 2:

$$\hat{\beta} = \frac{\sum_i Y_i}{\sum_i X_i}.$$

Estimator 3:

$$\hat{\beta} = \frac{\sum_i X_i Y_i}{\sum_i X_i^2}.$$

All three estimators are unbiased.

Principle of unbiased Estimation:

When choosing among several different estimators of u, select one that is unbiased.

Principle of Minimum Variance Unbiased Estimation:

Among all estimators of θ that are unbiased, choose the one that has minimum variance. The resulting θ is called the minimum variance unbiased estimator (MVUE) of θ .

Example (textbook Example 6.5) Cont.

The variances for the three estimators are

Estimator 1:

$$\operatorname{Var}(\hat{\beta}) = \frac{\sigma^2}{n^2} \sum_i \frac{1}{X_i^2}.$$

$$\operatorname{Var}(\hat{\beta}) = \frac{n\sigma^2}{\left(\sum_i X_i\right)^2}.$$

$$\operatorname{Var}(\hat{\beta}) = \frac{\sigma^2}{\sum_i X_i^2}.$$

The third estimator has the smallest variance among the three.