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Sample Mean

Proposition

Let X1, X2, . . . , Xn be a random sample from a population with mean µ and standard
deviation σ. Then

I E(X̄) = µ

I V ar(X̄) = σ2

n

In addition, with T = X1 + · · ·+Xn, we have

I E(T ) = nµ

I V ar(T ) = nσ2

Interpretation:
The sample mean’s expectation is the population mean, and its variance is the
population variance divided by the sample size.
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Sample Mean — Concepts

I Population: In statistics, a population is the entire pool from which a statistical
sample is drawn. It is the complete set of individuals or objects that we are
interested in.

I Sample: A sample is a subset of the population. It is the group of individuals or
objects that we actually collect data from.

I Random Sample: A random sample is a sample in which each individual or
object in the population has an equal chance of being selected.

I An alternative expression is
X1, X2, . . . , Xn are independent and identically distributed (i.i.d.) random
variables with mean µ and variance σ2.
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Sample Mean — Justification

I By linearity of expectation, we have

E(T ) = E(X1 +X2 + · · ·+Xn) = E(X1) + E(X2) + · · ·+ E(Xn) = nµ.

I By independence, we have

V ar(T ) = V ar(X1+X2+· · ·+Xn) = V ar(X1)+V ar(X2)+· · ·+V ar(Xn) = nσ2

I Since X̄ = T/n, we have

E(X̄) = E(T/n) = E(T )/n = µ

and
V ar(X̄) = V ar(T/n) = V ar(T )/n2 = σ2/n.
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Example: Bernoulli and Binomial

Suppose we have an unfair coin whose probability of landing heads is p.
We toss the coin n times and let Xi be the indicator of the i-th toss.

I Xi = 1 if the i-th toss is head

I Xi = 0 if the i-th toss is tail

Xi follows a Bernoulli distribution with P (Xi = 1) = p and P (Xi = 0) = 1− p.

I E(Xi) = 1 · P (Xi = 1) + 0 · P (Xi = 0) = p

I V ar(Xi) = E(X2
i )− [E(Xi)]

2 = E(Xi)− [E(Xi)]
2 = p− p2 = p(1− p)
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Example: Bernoulli and Binomial

Let T = X1 +X2 + · · ·+Xn be the number of heads from n tosses.

By definition, T follows a binomial distribution with parameters n and p, denoted as
T ∼ Bin(n, p). (number of successes in n independent Bernoulli trials)
From our previous statement:

I E(T ) = n · E(Xi) = np

I V ar(T ) = n · V ar(Xi) = np(1− p)

Similary, let X̄ = T/n be the proportion of heads from n tosses. Then

I E(X̄) = E(Xi) = p

I V ar(X̄) = V ar(Xi)/n = p(1− p)/n
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Normal Population Distribution

Proposition

Let X1, X2, . . . , Xn be a random sample from a normal distribution with mean µ and
standard deviation σ. Then for any n, X̄ is normally distributed with mean µ and
variance σ2/n.

A random variable X is said to have a normal distribution with mean µ and variance
σ2, denoted by N(µ, σ2), if its probability density function is given by

f(x) =
1√

2πσ2
e−(x−µ)

2/(2σ2).

If X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) are independent, then

c1X1 + c2X2 ∼ N(c1µ1 + c2µ2, c
2
1σ

2
1 + c22σ

2
2).
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Example

The distribution of egg weights of certian type is normal with mean value 53 and
standard deviation 0.3.

Let X1, X2, . . . , X12 be the weights of a dozen randomly selected eggs.
Let T = X1 +X2 + · · ·+X12 be the total weight of the dozen eggs.

E(T ) = 12× 53 = 636, V ar(T ) = 12× 0.32 = 1.08.

The probability that the total weight of the dozen eggs is between 635 and 640 is

P (635 < T < 640) = P

(
635− 636√

1.08
< Z <

640− 636√
1.08

)
= P (−0.96 < Z < 3.85) = 0.8315,

where Z ∼ N(0, 1) follows the standard normal distribution.
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Central Limit Theorem

Theorem (Central Limit Theorem (CLT))

Let X1, X2, . . . , Xn be a random sample from a population with mean µ and variance
σ2. Then if n is sufficiently large, X̄ has approximately a normal distribution with
mean µ and variance σ2/n, and T also has approximately a normal distribution with
mean nµ and variance nσ2. The larger the value of n, the better the approximation.

A shorter version:

√
n(X̄ − µ)

σ

D−→ N(0, 1) as n→∞
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Central Limit Theorem

I Implicit Assumption: The population distribution has finite mean and finite
variance.

I Sequential Interpretation: The CLT applies to a sequence of i.i.d. random
variables.

I Reparametrization: When n is large enough, Y =
√
n(X̄ − µ)/σ is

approximately standard normal, where the limit distribution does not depend on n.

I Approximation: The approximated distribution should be interpreted that the
c.d.f. of Y , P (Y ≤ t), converges to the c.d.f. of N(0, 1) as n→∞ for any t.

I Proof: The proof of the Central Limit Theorem is beyond the scope of this
course. It is a result from the characteristic function and the Lévy’s convergence
theorem.

I Rule of Thumb: n ≥ 30 is often considered as a sufficiently large sample size.
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Example

Let Y be a Binomial random variable with parameters n = 100 and p = 0.5.
We want to estimate the probability P (40 < Y < 60).

Recall our discussion on tossing a coin. Let Xi be the indicator of the i-th toss.
Then T = X1 +X2 + · · ·+X100 follows a Binomial distribution with parameters
n = 100 and p = 0.5. That is, T ∼ Y .
From the central limit theorem,

X̄ ≈ N(p, p(1− p)/n) ∼ N(0.5, 0.0025).

Therefore, T = nX̄ ∼ N(50, 25).
We have

P (40 < Y < 60) = P (40 < T < 60) ≈ P
(

40− 50√
25

< Z <
60− 50√

25

)
= P (−2 < Z < 2)
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From Probabilitic Model to Statistical Inference

I Probabilitic Model:
Given the (known) parameters of the population (e.g. mean and variance), we can
model the distribution of the sample.

I Statistical Inference:
Given the sample, we want to estimate the(unknown) parameters of the
population.
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Point Estimation

A point estimate of a parameter θ is a single number that can be regarded as a
sensible value of θ. It is obtained by selecting a suitable sta tistic and computing its
value from the given sample data. The selected statistic is called the point estimator
of θ.

Terminology:

I Parameter / Estimand: A numerical characteristic of a population.

I Estimator: A function of the sample data used to estimate a parameter.

I Estimate: The value of the estimator computed from the sample data.

Properties:

I Estimand is usually a fixed and unknown value.

I Estimator is a random variable whose value depends on the sample data.

I Estimate is a realization of the estimator.
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Example

I An automobile manufacturer has developed a new type of bumper.

I The manufacturer has used this bumper in a sequence of n = 25 controlled
crashes against a wall, each at 10 mph, using one of its compact car models.

I Let X = the number of crashes that result in no visible damage to the automobile.

I The estimand is the probability of no visible damage in a crash, denoted as p.

I The estimator is

p̂ =
X

n

I If X is observed to be x = 15, the estimate is

x

n
=

15

25
= 0.6
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Example

X = voids filled with asphalt(%) for 52 specimens of a certain type of hot-mix asphalt:

I Estimand: the variance of the voids filled with asphalt.
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Example

I Estimator 1: the sample variance

σ̂2 =

∑n
i=1(Xi − X̄)2

n− 1

I The estimate is

s2 =

∑52
i=1(xi − x̄)2

52− 1
= 41.126

I Esimator 2:

σ̂2 =

∑n
i=1(Xi − X̄)2

n

I The estimate is

s2 =

∑52
i=1(xi − x̄)2

52
= 40.336



Example

I Estimator 1: the sample variance

σ̂2 =

∑n
i=1(Xi − X̄)2

n− 1

I The estimate is

s2 =

∑52
i=1(xi − x̄)2

52− 1
= 41.126

I Esimator 2:
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∑n
i=1(Xi − X̄)2

n

I The estimate is
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i=1(xi − x̄)2

52
= 40.336



Evaluate an Estimator
Recall θ is the parameter to be estimated, θ̂ is an estimator.

I The bias of an estimator θ̂ is defined as

Bias(θ̂) = E(θ̂ − θ) = E(θ̂)− θ.

I The variance of an estimator θ̂ is defined as

Var(θ̂) = E[(θ̂ − E(θ̂))2] = E(θ̂2)− E(θ̂)2.

I The standard error of an estimator θ̂ is defined as

se(θ̂) =

√
Var(θ̂).

I The mean squared error (MSE) of an estimator θ̂ is defined as

MSE(θ̂) = E[(θ̂ − θ)2] = Var(θ̂) + Bias(θ̂)2.
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Example

Let X1, X2, . . . , Xn be a random sample from a population with mean µ and variance
σ2. We want to estimate µ.

I Estimator 1: µ̂ = X1.
Bias: 0, Variance: σ2, MSE: σ2.

I Estimator 2: µ̂ = 0.
Bias: −µ, Variance: 0, MSE: µ2.

I Estimator 3: µ̂ = X1+X2+···+Xn
n = X̄.

Bias: 0, Variance: σ2

n , MSE: σ2

n .

I Estimator 4: µ̂ = αX̄ for a constant 0 < α < 1.
Bias: (α− 1)µ, Variance: α2σ2

n , MSE: (1− α)2µ2 + α2 σ2

n .
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Unbiased Estimator

An estimator with zero bias is called an unbiased estimator. That is, an estimator θ̂
is unbiased if

E(θ̂) = θ.
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Unbiased Estimator

Let X1, X2, . . . , Xn be a random sample from a population with mean µ and variance
σ2.

Proposition

The sample mean X̄ = n−1
∑

iXi is an unbiased estimator of the population mean µ.
That is,

E(X̄) = µ.

The sample variance S2 = (n− 1)−1
∑

i(Xi − X̄)2 is an unbiased estimator of the
population variance σ2. That is,

E(S2) = σ2.

The proposition also implies n−1
∑

i(Xi− X̄)2 is biased for the population variance σ2.



Unbiased Estimator

Let X1, X2, . . . , Xn be a random sample from a population with mean µ and variance
σ2.
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The sample mean X̄ = n−1
∑

iXi is an unbiased estimator of the population mean µ.
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Example (textbook Example 6.5)

I Investigation on how contaminant concentration in air related to concentration on
a wafer surface after prolonged exposure.

I Collect data for i = 1, 2, . . . , n = 6 experiments.

I Set Xi: DBP concentration in air.

I Observe Yi: DBP concentration on wafer surface after 4 hours.



Example (textbook Example 6.5)

We assume
Yi = βXi + εi,

with εi be the random error term with E(ε) = 0 and Var(ε) = σ2.

Consider the following three estimators:

I Estimator 1:

β̂ =
1

n

∑
i

Yi
Xi
.

I Estimator 2:

β̂ =

∑
i Yi∑
iXi

.

I Estimator 3:

β̂ =

∑
iXiYi∑
iX

2
i

.

All three estimators are unbiased.
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Principles in Choosing Estimators

Principle of unbiased Estimation:
When choosing among several different estimators of u, select one that is unbiased.

Principle of Minimum Variance Unbiased Estimation:
Among all estimators of θ that are unbiased, choose the one that has minimum
variance. The resulting θ is called the minimum variance unbiased estimator (MVUE)
of θ.



Example (textbook Example 6.5) Cont.

The variances for the three estimators are

I Estimator 1:

Var(β̂) =
σ2

n2

∑
i

1

X2
i

.

I Estimator 2:

Var(β̂) =
nσ2

(
∑

iXi)
2 .

I Estimator 3:

Var(β̂) =
σ2∑
iX

2
i

.

The third estimator has the smallest variance among the three.


