STAT 423/523 Statistical Methods for Engineers and Scientists

Lecture 1: Review

Chencheng Cai

Washington State University

Sample Space

An experiment is any activity or process whose outcome is subject to uncertainty.

- Flip a coin (outcome: head or tail)
- ► Toss a die (outcome: nummber 1 to 6)
- Measure the weight of an apple (outcome: a real number)
- A patient takes a drug (outcome: recovery or not)

The sample space is the set of all possible outcomes of an experiment, denoted by S.

- ▶ $S = \{H, T\}$ for flipping a coin
- $\blacktriangleright~\mathcal{S}=\{1,2,3,4,5,6\}$ for tossing a die
- ▶ $S = \mathbb{R}_+$ for measuring the weight of an apple
- ▶ $S = \{$ recovery, not recovery $\}$ for a patient taking a drug
- ▶ $S = \{HH, HT, TH, TT\}$ for flipping a coin twice

Events

An **event** is a subset of the sample space.

- ▶ The event that observing one head when flipping a coin twice: $A = \{HT, TH\}$
- The event that observing an even number when tossing a die: $B = \{2, 4, 6\}$
- ▶ The event that the apple's weight is less than 1: $C = \{x \in \mathbb{R}_+ : x < 1\} = (0, 1)$
- \blacktriangleright A special case is the null event: \varnothing , which is the event that never happens.

Operations on events

- ► The **complement** of an event *A*, denoted by *A'*, is the set of all outcomes in *S* that are not in *A*.
- ▶ The **union** of two events A and B, denoted by $A \cup B$, is the set of all outcomes that are in A or B.
- The intersection of two events A and B, denoted by A ∩ B, is the set of all outcomes that are in both A and B.

Events

Consider the experiment that tossing a die twice.

- ▶ The sample space S contains $6 \times 6 = 36$ outcomes.
- ▶ The event that the the first toss is greater than the second is

 $A = \{21, 31, 32, 41, 42, 43, 51, 52, 53, 54, 61, 62, 63, 64, 65\}$

The event that the sum of two tosses is 7 is

 $B = \{16, 25, 34, 43, 52, 61\}$

The event that the sum of two tosses is 7 and the first toss is greater than the second is

$$C = A \cap B = \{43, 52, 61\}$$

The event that the sum of two tosses is 7 or the first toss is greater than the second is

 $D = A \cup B = \{21, 31, 32, 41, 42, 43, 51, 52, 53, 54, 61, 62, 63, 64, 65, 16, 25, 34\}$

Venn Diagram

The Venn diagram is a visual representation of events.

For example, it is easy to see that $A \cup B = (A \cap B') \cup (A' \cap B) \cup (A \cap B)$.

The **probability** of an event A, denoted by P(A), is a number between 0 and 1 that quantifies the likelihood of A occurring.

- ▶ P(A) = 0 means that A will never happen.
- P(A) = 1 means that A will always happen.

Axioms of probability

- 1. $P(A) \ge 0$ for any event A.
- **2**. P(S) = 1.
- 3. For any sequence of mutually disjoint events A_1, A_2, \ldots ,

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

Remark: A and B are **mutually disjoint** if $A \cap B = \emptyset$.

Axioms of probability

- 1. $P(A) \ge 0$ for any event A.
- **2**. P(S) = 1.
- 3. For any sequence of mutually disjoint events A_1, A_2, \ldots ,

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

Interpretations

- 1. The probability is always non-negative.
- 2. Because ${\mathcal S}$ contains every possible outcome, the probability of ${\mathcal S}$ is 1.
- 3. For disjoint events, the probability of their union is the sum of their probabilities.

Remark: The third axiom includes the finite case by setting $A_i = \emptyset$ for i > N.

Some properties of probability:

- ▶ P(A') = 1 P(A) for any event A. either A happens or not. This can be shown by observing that $A \cap A' = \emptyset$, $A \cup A' = S$ and by Axiom 3, $1 = P(S) = P(A \cup A') = P(A) + P(A')$.
- ▶ $P(\emptyset) = 0$. the null event never happens.
- ▶ $P(A) \leq 1$ for any event A. the probability is always less than or equal to 1.
- P(A∪B) = P(A) + P(B) P(A∩B) for any events A and B. the inclusion-exclusion principle.
 This can be easily shown by the Venn diagram.
- ▶ $P(A \cup B) \le P(A) + P(B)$ for any events A and B. the **union bound**.

Consider tossing a die. Let the probability for each outcome as $P(\{1\}) = P(\{2\}) = \cdots = P(\{6\}) = 1/6.$

- ► The probability of observing an even number is $P(\{2,4,6\}) = P(\{2\}) + P(\{4\}) + P(\{6\}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$. (Axiom 3)
- ▶ The probability of observing an odd number is $P(\{1,3,5\}) = 1 P(\{2,4,6\}) = 1 \frac{1}{2} = \frac{1}{2}.$
- ► The probability of observing a prime number is $P(\{2,3,5\}) = P(\{2\}) + P(\{3\}) + P(\{5\}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$. (Axiom 3)
- The probability of observing an even prime number is $P(\{2\}) = \frac{1}{6}$.

Check the inclusion-exclusion principle:

 $P(\{1,3,5\}\cup\{2,3,5\})+P(\{1,3,5\}\cap\{2,3,5\})=P(\{1,3,5\})+P(\{2,3,5\})$

Conditional Probability

For any two events A and B with P(B) > 0, the **conditional probability** of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

- ▶ P(A|B) is the probability of A given that B has occurred.
- ▶ P(A|B) is a number between 0 and 1.
- By multiplying P(B) on both sides, we have the **multiplication rule**:

 $P(A \cap B) = P(A|B)P(B).$

Independence

Two events A and B are **independent** if P(A|B) = P(A), and are **dependent** otherwise.

 \blacktriangleright A and B are independent if and only if

$$P(A \cap B) = P(A)P(B)$$

This definition of independence can be extended to more than two events: A₁, A₂,..., A_n are **mutually independent** if for any subset A_{i1}, A_{i2},..., A_{ik},

$$P(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}) = P(A_{i_1})P(A_{i_2}) \cdots P(A_{i_k}).$$

Conditional Probability and Independence Example

Consider flip a coin twice. The sample space is $S = \{HH, HT, TH, TT\}$. We can assign equal probability to each outcome (i.e. 1/4)

- The event that the first toss is head is $A = \{HH, HT\}$ with P(A) = 1/2.
- ▶ The event that the number of heads is 1 is $B = \{HT, TH\}$ with P(B) = 1/2.

• The conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1/4}{1/2} = \frac{1}{2} = P(A).$$

Therefore, A and B are independent.

Random Variable

For a given sample space S of some experiment, a **random variable** (rv) is any rule that associates a number with each outcome in S. In mathematical language, a random variable is a function whose domain is the sample space and whose range is the set of real numbers.

- A discrete random variable is a random variable that can take on a countable number of values.
 - The number of heads when flipping a coin n times.
 - The number of defective items in a batch of 100.
 - The number of students in a class.
- A continuous random variable is a random variable that can take on an uncountable number of values.
 - The weight of an apple.
 - The time it takes to complete a task.
 - The temperature of a room.

Discrete Random Variable

The probability distribution or probability mass function (pmf) of a discrete random variable X is defined for every number x by p(x) = P(X = x).

We use the convention in the textbook that P stands for probability of events and p stands for probability distribution.

The **cumulative distribution function** (cdf) of a discrete random variable X is defined for every number x by

$$F(x) = P(X \le x) = \sum_{y:y \le x} p(y)$$

Consider toss a die twice. Let X be the sum of two tosses and let p be the pmf of X. Then

$$p(5) = P(X = 5) = P(\{14, 23, 32, 41\}) = \frac{4}{36} = \frac{1}{9}$$

The cdf of X is

$$F(5) = P(X \le 5) = p(2) + p(3) + p(4) + p(5) = \frac{1}{36} + \frac{1}{18} + \frac{1}{12} + \frac{1}{9} = \frac{5}{18}$$

Discrete Random Variable

The **expected value** or **mean** of a discrete random variable X is defined by

$$E(X) = \sum_{x} x \cdot p(x)$$

For a function g(X) of a discrete random variable X, the expected value of g(X) is

$$E[g(X)] = \sum_{x} g(x) \cdot p(x)$$

The **variance** of a discrete random variable X is defined by

$$Var(X) = E[(X - E(X))^2] = E(X^2) - E(X)^2$$

Let $X \mbox{ and } Y$ be two rvs and $a \mbox{ and } b$ be two constants. Then

$$\blacktriangleright \ E(aX + bY) = aE(X) + bE(Y)$$

$$\blacktriangleright Var(aX) = a^2 Var(X)$$

$$\blacktriangleright Var(aX+bY) = a^2 Var(X) + b^2 Var(Y) + 2ab \cdot Cov(X,Y)$$

Common discrete distributions:

- Bernoulli
- Binomial
- Poisson
- ► Geometric
- Hypergeometric

The **probability density function** (pdf) of a continuous random variable X is a function f(x) such that for any two numbers a and b with a < b,

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

The **cumulative distribution function** (cdf) of a continuous random variable X is defined for every number x by

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

The **expected value** or **mean** of a continuous random variable X is defined by

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

For a function g(X) of a continuous random variable X, the expected value of g(X) is

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) dx$$

The **variance** of a continuous random variable X is defined by

$$Var(X) = E[(X - E(X))^2] = E(X^2) - E(X)^2$$

Let X be a uniform random variable on the interval [0,1]. Then its pdf is f(x) = 1 for $0 \le x \le 1$ and f(x) = 0 otherwise because for any a and b with $0 \le a \le b \le 1$,

$$P(a \le X \le b) = \int_{a}^{b} 1dx = b - a$$

The cdf of X is (for $x \in [0,1]$)

$$F(x) = P(X \le x) = \int_0^x 1 dx = x$$

and F(x) = 0 for x < 0 and F(x) = 1 for x > 1. The expected value of X is

$$E(X) = \int_0^1 x dx = \frac{1}{2}$$

and the variance of X is

$$Var(X) = E(X^2) - E(X)^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

Common continuous distributions:

- Uniform
- Normal
- Exponential
- ▶ Gamma
- Beta

Joint Distribution

We will take continuous random variables as an example. For discrete random variables, please replace integrals by summations.

The **joint distribution** of two continuous random variables X and Y is defined by the joint pdf f(x, y) such that for any two-dimensional region A,

$$P((X,Y)\in A) = \iint_A f(x,y) dx dy$$

The marginal distribution of X is the pdf of X:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

The conditional distribution of Y given X = x is the pdf of Y given X = x:

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

Joint Distribution

Let X and Y be two continuous random variables with joint pdf f(x, y). The **expected value** of a function g(X, Y) is

$$E[g(X,Y)] = \iint g(x,y)f(x,y)dxdy$$

The **covariance** of X and Y is

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y)$$

The **correlation** of X and Y is

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

Joint Distribution

X and Y are **independent** if $f(x, y) = f_X(x)f_Y(y)$ for all x and y.

X and Y are **uncorrelated** if Cov(X, Y) = 0.

Independence implies uncorrelated, but uncorrelated does not imply independence.
 Example: X is a standard normal random variable and Z is a Rademarcher random variable (random ±1). Let Y = XZ. Then X and Y are uncorrelated but not independent.