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Multiple Linear Regression

In cases when we have more than one predictor variable, we can extend the simple
linear regression model to a multiple linear regression model:

yi = β0 + β1x1i + β2x2i + · · ·βpxki + εi,

where

I yi is the response variable,

I xji is the jth predictor variable for the ith observation

I εi ∼ N(0, σ2) is the error term.

The predictors could be:

I additional covariates in the dataset

I interactions between predictors

I nonlinear functions of predictors
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Ordinary Least Squares

We follow the same principle as in simple linear regression and minimize the residual
sum of squares (RSS):

β̂0, β̂1, . . . , β̂k = arg min
β0,β1,...,βk

n∑
i=1

(yi − β0 − β1x1i − β2x2i − · · · − βkxki)2

We compute the partial derivatives of the RSS with respect to each βj :

∂RSS

∂β0
= −2

n∑
i=1

(yi − β0 − β1x1i − β2x2i − · · · − βkxki)

∂RSS

∂βj
= −2

n∑
i=1

xji(yi − β0 − β1x1i − β2x2i − · · · − βkxki), j = 1, . . . , k
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Ordinary Least Squares

The OLS estimators can be obtained by setting the partial derivatives to zero:

n∑
i=1

(yi − β0 − β1x1i − β2x2i − · · · − βkxki) = 0

n∑
i=1

x1i(yi − β0 − β1x1i − β2x2i − · · · − βkxki) = 0

n∑
i=1

x2i(yi − β0 − β1x1i − β2x2i − · · · − βkxki) = 0

...
n∑
i=1

xki(yi − β0 − β1x1i − β2x2i − · · · − βkxki) = 0



Ordinary Least Squares

This is a linear system of equations in the unknowns β0, β1, . . . , βk.

n∑
i=1

yi = nβ0 + β1

n∑
i=1

x1i + β2

n∑
i=1

x2i + · · ·+ βk

n∑
i=1

xki

n∑
i=1

x1iyi = β0

n∑
i=1

x1i + β1

n∑
i=1

x21i + β2

n∑
i=1

x1ix2i + · · ·+ βk

n∑
i=1

x1ixki

n∑
i=1

x2iyi = β0

n∑
i=1

x2i + β1

n∑
i=1

x2ix1i + β2

n∑
i=1

x22i + · · ·+ βk

n∑
i=1

x2ixki

...
n∑
i=1

xkiyi = β0

n∑
i=1

xki + β1

n∑
i=1

xkix1i + β2

n∑
i=1

xkix2i + · · ·+ βk

n∑
i=1

x2ki



Ordinary Least Squares
We can write it in matrix form:

n
∑n

i=1 x1i
∑n

i=1 x2i · · ·
∑n

i=1 xki∑n
i=1 x1i

∑n
i=1 x

2
1i

∑n
i=1 x1ix2i · · ·

∑n
i=1 x1ixki∑n

i=1 x2i
∑n

i=1 x2ix1i
∑n

i=1 x
2
2i · · ·

∑n
i=1 x2ixki

...
...

...
. . .

...∑n
i=1 xki

∑n
i=1 xkix1i

∑n
i=1 xkix2i · · ·

∑n
i=1 x

2
ki




β0
β1
β2
...
βk

 =



∑n
i=1 yi∑n

i=1 x1iyi∑n
i=1 x2iyi

...∑n
i=1 xkiyi



more compactly, we can write it as:
Sx0x0 Sx0x1 Sx0x2 · · · Sx0xk
Sx1x0 Sx1x1 Sx1x2 · · · Sx1xk
Sx2x0 Sx2x1 Sx2x2 · · · Sx2xk

...
...

...
. . .

...
Sxkx0 Sxkx1 Sxkx2 · · · Sxkxk




β0
β1
β2
...
βk

 =


Sx0y
Sx1y
Sx2y

...
Sxky


where Sxjxl =

∑n
i=1 xjixli and Sxjy =

∑n
i=1 xjiyi with x0i = 1.
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Ordinary Least Squares

The OLS estimators can be computed using matrix algebra:
β̂0
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Ordinary Least Squares

We can verify the solution is compatible with the simple linear regression case.

When k = 1, we have:[
β̂0
β̂1

]
=

[
Sx0x0 Sx0x1
Sx1x0 Sx1x1

]−1 [
Sx0y
Sx1y

]
=

[
n

∑
xi∑

xi
∑
x2i

]−1 [ ∑
yi∑
xiyi

]
=

1

n
∑
x2i − (

∑
xi)2

[ ∑
x2i −

∑
xi

−
∑
xi n

] [ ∑
yi∑
xiyi

]
=

1

n
∑
x2i − (

∑
xi)2

[∑
x2i
∑
yi −

∑
xi
∑
xiyi

n
∑
xiyi −

∑
xi
∑
yi

]
= S−1

xx

[
ȳSxx − x̄Sxy

Sxy
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Ordinary Least Squares

For the variance component, we have:

σ̂2 = MSE =
RSS(β̂0, β̂1, . . . , β̂k)

n− k − 1
=

∑n
i=1(yi − ŷi)2

n− k − 1

where

I ŷi = β̂0 + β̂1x1i + β̂2x2i + · · ·+ β̂kxki is the predicted or fitted value of yi
I The degrees of freedom is n− k − 1 because we have estimated k + 1 parameters

(β0, β1, . . . , βk) from the data.
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Ordinary Least Squares

The OLS estimators are unbiased:

E[β̂j ] = βj , j = 0, 1, . . . , k

Let sβ̂j be the estimated standard error of β̂j . Then

β̂j
sβ̂j
∼ tn−k−1

which is a t-distribution with n− k − 1 degrees of freedom.
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Confidence interval and t-test
The (1− α) confidence interval for βj is given by:

β̂j ± tα/2,n−k−1sβ̂j .

Consider the hypothesis test:

H0 : βj = 0 vs. Ha : βj 6= 0

We reject H0 if:

I The CI does not contain 0.

I The t-statistic

t =
β̂j
sβ̂j

has absolute value greater than tα/2,n−k−1.

I The p-value
p = 2(1− Ft,n−k−1(|t|))

is less than α.
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Confidence interval and t-test

I The standard error of β̂j can be read from the output of the regression models in
R and Python.

I Sometimes the p-values are reported in the output as well.

I A covariate xji, i = 1, . . . , n is significant if the null hypothesis H0 : βj = 0 is
rejected.

I A covariate xji, i = 1, . . . , n is insignificant if the null hypothesis H0 : βj = 0 is
not rejected.

I Insignificant covariates can be removed from the model to simplify the model.
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Example
We consider the mtcars dataset in R and run a linear regression model of mpg (miles
per gallon) on disp (displacement), hp (gross horsepower), and wt (weight of car).

Call:

lm(formula = mpg ~ disp + hp + wt, data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-3.891 -1.640 -0.172 1.061 5.861

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.105505 2.110815 17.579 < 2e-16 ***

disp -0.000937 0.010350 -0.091 0.92851

hp -0.031157 0.011436 -2.724 0.01097 *

wt -3.800891 1.066191 -3.565 0.00133 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.639 on 28 degrees of freedom

Multiple R-squared: 0.8268,Adjusted R-squared: 0.8083

F-statistic: 44.57 on 3 and 28 DF, p-value: 8.65e-11



Example

I The estimated intercept is β̂0 = 37.11.

I The estimated slope for disp is β̂1 = −0.000937.

I The estimated slope for hp is β̂2 = −0.03116.

I The estimated slope for wt is β̂3 = −3.8009.

I The intercept, hp, and wt are significant at α = 0.05 level.

I The disp is insignificant at α = 0.05 level.

I fitted model is

mpg = 37.11−0.0009×disp−0.0312×hp−3.801×wt+ε with ε ∼ N(0, 2.6392)
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Example
A direct improvement of the model is to remove disp from the model and refit the
model:

Call:

lm(formula = mpg ~ hp + wt, data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-3.941 -1.600 -0.182 1.050 5.854

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.22727 1.59879 23.285 < 2e-16 ***

hp -0.03177 0.00903 -3.519 0.00145 **

wt -3.87783 0.63273 -6.129 1.12e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.593 on 29 degrees of freedom

Multiple R-squared: 0.8268,Adjusted R-squared: 0.8148

F-statistic: 69.21 on 2 and 29 DF, p-value: 9.109e-12



Model Comparison

Consider two nested models:

I The full model: (all subscript i are removed for simplicity)

y = β0 + β1x1 + β2x2 + · · ·+ βqxq + βq+1xq+1 + · · ·+ βkxk + ε

I The reduced model: (all subscript i are removed for simplicity)

y = β0 + β1x1 + · · ·+ βqxq + ε

I The reduced model is a special case of the full model with βq+1 = · · · = βk = 0.

I Comparing the two models is equivalent to testing the null hypothesis:

H0 : βq+1 = · · · = βk = 0
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Model Comparison

H0 : βq+1 = · · · = βk = 0

In order to compare the nested models, we can use the F-test:

F =
(SSEreduced − SSEfull)/(k − q)

SSEfull/(n− k − 1)

reject null if

I F > Fα,k−q,n−k−1

I The p-value:
1− FF,k−q,n−k−1(F )

is less than α.
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Example

Recall the mtcars dataset, we compare the following two models:

> model1 = lm(mpg~disp+hp+wt, mtcars)

> model2 = lm(mpg~disp, mtcars)

The F-test result can be read from anova function:

> anova(model2, model1)

Analysis of Variance Table

Model 1: mpg ~ disp

Model 2: mpg ~ disp + hp + wt

Res.Df RSS Df Sum of Sq F Pr(>F)

1 30 317.16

2 28 194.99 2 122.17 8.7715 0.001102 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Model Comparison

I R2 is a metric for the goodness of fit of the model.

I But we cannot use R2 to compare two models with different number of
predictors, because adding more predictors will always increase R2.

I We can use the adjusted R2:

R2
adj = 1− n− 1

n− k − 1

SSE

SST

I The adjusted R2 adds a penalty for the number of predictors in the model.

I The adjusted R2 is always less than or equal to R2.
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Example

Recall part of the output of the mtcars example:

Residual standard error: 2.639 on 28 degrees of freedom

Multiple R-squared: 0.8268,Adjusted R-squared: 0.8083

F-statistic: 44.57 on 3 and 28 DF, p-value: 8.65e-11

I The R2 is 0.8268, which means 82.68% of the variability in mpg can be explained
by the model.

I The adjusted R2 is 0.8083.

I The F-statistic and the p-value are for the following hypothesis test:

H0 : β1 = β2 = · · · = βk = 0.

I The p-value is very small, which means at least one of the predictors is significant
in the model or the model is significant.
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Example
However, if we consider a linear regression model of mpg on disp, hp, and cyl.

Call:

lm(formula = mpg ~ disp + hp + cyl, data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-4.0889 -2.0845 -0.7745 1.3972 6.9183

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.18492 2.59078 13.195 1.54e-13 ***

disp -0.01884 0.01040 -1.811 0.0809 .

hp -0.01468 0.01465 -1.002 0.3250

cyl -1.22742 0.79728 -1.540 0.1349

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.055 on 28 degrees of freedom

Multiple R-squared: 0.7679,Adjusted R-squared: 0.743

F-statistic: 30.88 on 3 and 28 DF, p-value: 5.054e-09

None of the covariates are significant at α = 0.05 level. But they are jointly significant.
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However, if we consider a linear regression model of mpg on disp, hp, and cyl.

Call:

lm(formula = mpg ~ disp + hp + cyl, data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-4.0889 -2.0845 -0.7745 1.3972 6.9183

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.18492 2.59078 13.195 1.54e-13 ***

disp -0.01884 0.01040 -1.811 0.0809 .

hp -0.01468 0.01465 -1.002 0.3250

cyl -1.22742 0.79728 -1.540 0.1349

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.055 on 28 degrees of freedom

Multiple R-squared: 0.7679,Adjusted R-squared: 0.743

F-statistic: 30.88 on 3 and 28 DF, p-value: 5.054e-09

None of the covariates are significant at α = 0.05 level. But they are jointly significant.



Multicollinearity

The multicollinearity is a problem when two or more predictors are highly correlated
with each other.

I It can cause the estimated coefficients to be unstable and have large standard
errors.

I Individual covariates may not be significant, but the model is significant.

To verify it, we can check the correlation matrix of the predictors in prevous example:

> cor(mtcars[,c("disp", "hp", ’cyl’)])

disp hp cyl

disp 1.0000000 0.7909486 0.9020329

hp 0.7909486 1.0000000 0.8324475

cyl 0.9020329 0.8324475 1.0000000
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Multicollinearity

To measure the multicollinearity, we can use the variance inflation factor (VIF):

V IFj =
1

1−R2
j

where R2
j is the R2 of the regression of xj on all other predictors.

I If V IFj > 10, we consider xj is highly correlated with other predictors.

I If 5 < V IFj < 10, we consider xj is correlated with other predictors.

I If 1 < V IFj < 5, we consider xj is lightly correlated with other predictors.

I If V IFj = 1, we consider xj is not correlated with other predictors.
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Example

We can use the vif function in R to compute the VIF for each predictor:

> library(car)

> model = lm(mpg~disp+hp+cyl, mtcars)

> vif(model)

disp hp cyl

5.521460 3.350964 6.732984

We should consider removing cyl from the model.
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Higher Order Predictor

In many cases, the dependence between the response and the predictors is not linear:

I The response is a nonlinear function of the predictors.

I The response depends on an interaction between two or more predictors.

I A linear regression with two predictors x1 and x2 can be written as:

y = β0 + β1x1 + β2x2 + ε

I A linear regression with two predictors x1 and x2 and their interaction can be
written as:

y = β0 + β1x1 + β2x2 + β12x1x2 + ε

I A linear regression with two predictors x1 and x2 and their quadratic terms can be
written as:

y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + ε
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Higher Order Predictor

I A linear regression with two predictors x1 and x2 and their interaction and
quadratic terms can be written as:

y = β0 + β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2 + ε

I A linear regression with two predictors x1 and x2 in a nonlinear function can be
written as:

y = β0 + β1f1(x1) + β2f2(x2) + ε

for some known nonlinear functions f1 and f2.

Drawbacks:

I It can easily overkill the problem if we add too many higher order terms.

I A natural collinearity between the predictors and the higher order terms.

I Need variable selection to find the best model.
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Example
The trees dataset in R contains the measurements of the girth, height, and volume of
black cherry trees.

We can fit a linear regression model of Volume on Girth and Height:

Call:

lm(formula = Volume ~ Girth + Height, data = trees)

Residuals:

Min 1Q Median 3Q Max

-6.4065 -2.6493 -0.2876 2.2003 8.4847

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***

Girth 4.7082 0.2643 17.816 < 2e-16 ***

Height 0.3393 0.1302 2.607 0.0145 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,Adjusted R-squared: 0.9442

F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
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Example

I All coefficients are significant at α = 0.05 level.

I The R2 is 0.948.

In the mean time, we can check the correlation between the variables:

> cor(trees)

Girth Height Volume

Girth 1.0000000 0.5192801 0.9671194

Height 0.5192801 1.0000000 0.5982497

Volume 0.9671194 0.5982497 1.0000000

I A moderate correlation between Girth and Height.

I Multicollinearity is not a serious problem here.
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Example

We check the residual of the previous model against the covariates:

Some quadratic patterns can be observed from the first plot.
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Example

To confirm the second-order polynomial model, we plot the residual against (1) the
quadratic term of Girth and (2) the interaction term of Girth and Height:

Both shows an increasing pattern.
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To confirm the second-order polynomial model, we plot the residual against (1) the
quadratic term of Girth and (2) the interaction term of Girth and Height:

Both shows an increasing pattern.



Example
Candidate model 1: now we add the quadratic term of Girth to the model:

Call:

lm(formula = Volume ~ Girth + Height + I(Girth^2), data = trees)

Residuals:

Min 1Q Median 3Q Max

-4.2928 -1.6693 -0.1018 1.7851 4.3489

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -9.92041 10.07911 -0.984 0.333729

Girth -2.88508 1.30985 -2.203 0.036343 *

Height 0.37639 0.08823 4.266 0.000218 ***

I(Girth^2) 0.26862 0.04590 5.852 3.13e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.625 on 27 degrees of freedom

Multiple R-squared: 0.9771,Adjusted R-squared: 0.9745

F-statistic: 383.2 on 3 and 27 DF, p-value: < 2.2e-16



Example
Candidate model 2: we add the interaction term of Girth and Height to the model:

Call:

lm(formula = Volume ~ Girth + Height + Girth * Height, data = trees)

Residuals:

Min 1Q Median 3Q Max

-6.5821 -1.0673 0.3026 1.5641 4.6649

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 69.39632 23.83575 2.911 0.00713 **

Girth -5.85585 1.92134 -3.048 0.00511 **

Height -1.29708 0.30984 -4.186 0.00027 ***

Girth:Height 0.13465 0.02438 5.524 7.48e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.709 on 27 degrees of freedom

Multiple R-squared: 0.9756,Adjusted R-squared: 0.9728

F-statistic: 359.3 on 3 and 27 DF, p-value: < 2.2e-16



Example
Candidate model 3: we add both terms to the model:

Call:

lm(formula = Volume ~ Girth + Height + Girth * Height + I(Girth^2),

data = trees)

Residuals:

Min 1Q Median 3Q Max

-5.0748 -0.8494 0.0051 1.8396 4.0604

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.48906 33.61492 0.788 0.4378

Girth -4.58977 1.98854 -2.308 0.0292 *

Height -0.32992 0.62857 -0.525 0.6041

I(Girth^2) 0.17071 0.09762 1.749 0.0921 .

Girth:Height 0.05701 0.05024 1.135 0.2668

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.611 on 26 degrees of freedom

Multiple R-squared: 0.9781,Adjusted R-squared: 0.9748

F-statistic: 290.8 on 4 and 26 DF, p-value: < 2.2e-16



Example

Which model should be choose?

I Model 1: V olume ∼ Girth+Height+ I(Girth2)

I Model 2: V olume ∼ Girth+Height+Girth ∗Height
I Model 3: V olume ∼ Girth+Height+ I(Girth2) +Girth ∗Height

I Model 1 v.s. Model 2:
They have the same number of predictors. So we compare their R2, which
suggests Model 1 is better.

I Model 1 v.s. Model 3 and Model 2 v.s. Model 3:
Both are nested models. We can use the F-test to compare them.
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Example
Model 1 v.s. Model 3:

> anova(fit1, fit3)

Analysis of Variance Table

Model 1: Volume ~ Girth + Height + I(Girth^2)

Model 2: Volume ~ Girth + Height + Girth * Height + I(Girth^2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 27 186.01

2 26 177.23 1 8.7781 1.2877 0.2668

Model 2 v.s. Model 3:

> anova(fit2, fit3)

Analysis of Variance Table

Model 1: Volume ~ Girth + Height + Girth * Height

Model 2: Volume ~ Girth + Height + Girth * Height + I(Girth^2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 27 198.08

2 26 177.23 1 20.845 3.0579 0.09214 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Example

After all, we can choose Model 1 as the best model:

Volume = −9.92− 2.89× Girth + 0.376× Height + 0.269× Girth2 + ε

Can we do better than this?
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Example

The volume of a cyclindrical tree is given by:

V = πr2h

where r is the radius of the tree and h is the height of the tree.

Therefore, we
conjecture that

Volume ∝ Girth2 × Height

Hence, we fit a simple linear regression model of Volume on Girth2×Height without
intercept:

Volume = β1 × Girth2 × Height + ε
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Example

The volume of a cyclindrical tree is given by:

V = πr2h

where r is the radius of the tree and h is the height of the tree. Therefore, we
conjecture that

Volume ∝ Girth2 × Height

Hence, we fit a simple linear regression model of Volume on Girth2×Height without
intercept:

Volume = β1 × Girth2 × Height + ε



Example
Call:

lm(formula = Volume ~ 0 + I(Girth^2 * Height), data = trees)

Residuals:

Min 1Q Median 3Q Max

-4.6696 -1.0832 -0.3341 1.6045 4.2944

Coefficients:

Estimate Std. Error t value Pr(>|t|)

I(Girth^2 * Height) 2.108e-03 2.722e-05 77.44 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.455 on 30 degrees of freedom

Multiple R-squared: 0.995,Adjusted R-squared: 0.9949

F-statistic: 5996 on 1 and 30 DF, p-value: < 2.2e-16

I The result is way much better than the previous models.
I But the coefficient is not

1

4π × 12
= 0.0066

I The tree is not a solid cylinder.
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Example

If the tree is not a solid cylinder, literally speaking, it could be any of the following
models:

Volume ∝ Girthα × Height3−α,

for some α ∈ (0, 3).

I Reason 1: the unit of Girth is in foot, and the unit of Height is in inches. The
unit of Volume is in cubic foot.

I Reason 2: the volume is zero if either Girth or Height is zero.

I We used α = 2 to fit the model.

How can we determine α?



Example

If the tree is not a solid cylinder, literally speaking, it could be any of the following
models:

Volume ∝ Girthα × Height3−α,

for some α ∈ (0, 3).

I Reason 1: the unit of Girth is in foot, and the unit of Height is in inches. The
unit of Volume is in cubic foot.

I Reason 2: the volume is zero if either Girth or Height is zero.

I We used α = 2 to fit the model.

How can we determine α?



Example

If the tree is not a solid cylinder, literally speaking, it could be any of the following
models:

Volume ∝ Girthα × Height3−α,

for some α ∈ (0, 3).

I Reason 1: the unit of Girth is in foot, and the unit of Height is in inches. The
unit of Volume is in cubic foot.

I Reason 2: the volume is zero if either Girth or Height is zero.

I We used α = 2 to fit the model.

How can we determine α?



Example

If we have
Volume = V0 × Girthα × Height3−α

for some V0 > 0, we can take the logarithm of both sides:

log(Volume) = log(V0) + α log(Girth) + (3− α) log(Height)

By moving terms around, we have

log(Volume)− 3 log(Height) = log(V0) + α log(Girth/Height)

I We can define y = log(Volume)− 3 log(Height).

I We can define x = log(Girth/Height).

I Then log(V0) and α are the intercept and slope of the linear regression model of y
on x.
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Example

> y = log(trees$Volume) - 3*log(trees$Height)

> x = log(trees$Girth/trees$Height)

> summary(lm(y~x))

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-0.169031 -0.046756 -0.002936 0.067338 0.134836

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.18569 0.12963 -47.72 <2e-16 ***

x 1.99067 0.07279 27.35 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.08043 on 29 degrees of freedom

Multiple R-squared: 0.9627,Adjusted R-squared: 0.9614

F-statistic: 748 on 1 and 29 DF, p-value: < 2.2e-16



Example

I From the output, we have

V̂0 = e−6.18569 = 0.000206

α̂ = 1.99067

I The standard error for α̂ is 0.07279.

I There is no significant difference between α̂ and 2.

I Therefore, it is reasonable to use the model:

Volume = 0.000206× Girth2 × Height + error
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Catergorical Covariates

A categorical covariate is a covariate that takes on a limited number of values.

I The major of the students in a class.

I The gender

I The color of a car.

I Tree species.

I etc..

Catogoritcal variables are known as factors as we discussed before in ANOVA. It does
not make sense to run a linear regression on a categorical variable directly. Be need to
encode them into numerical variables.
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One-hot Encoding
Let xji be the j-th variable (categorical) of the i-th observation such that

xji ∈ {cat 1, cat 2, . . . , cat D}

That is xji can take on D different values.

The one-hot encoding of xji is to creat d binary variables:

xj1i, xj2i, . . . , xjDi

where

xjdi =

{
1 if xji = cat d

0 otherwise

I The d-th variable is 1 if the j-th variable is in the d-th category, and 0 otherwise.

I The variables are call dummy variables.

I For each observation, only one of the d dummy variables is 1, and all others are 0.
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One-hot Encoding

One problem of the one-hot encoding is that the D dummy variables are not
independent. To see this, we have

xj1i + xj2i + · · ·+ xjDi = 1.

In practice we only need D − 1 dummy variables:

xj1i, xj3i, . . . , xj(D−1)i

I When all D − 1 dummy variables are 0, the j-th variable is in the last category.

I The last category is called the reference category.
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Linear Regression on Categorical Variables

Now consider a linear regression model with 2 predictors x1 and x2, where x2 is a
categorical variable with D categories.

I The model is y ∼ x1 + x2.

I But x2 is a categorical variable, we need to use D − 1 dummy variables:

y ∼ x1 + x21 + x22 + · · ·+ x2(D−1)

I The model can be written as:

y = β0 + β1x1 + β21x21 + · · ·+ β2(D−1)x2(D−1) + ε

I The linear regression becomes a multiple linear regression with D predictors.
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Linear Regression on Categorical Variables

y = β0 + β1x1 + β21x21 + · · ·+ β2(D−1)x2(D−1) + ε

Interpretation of the coefficients:

I β0 is the intercept of the model for the reference category.

I β1 is the slope of the model for all categories.

I β2d is the difference between the intercept of the d-th category and the reference
category.
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Example
We use the mtcars dataset and treat cyl as a categorical variable.

Call:

lm(formula = mpg ~ disp + factor(cyl), data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-4.8304 -1.5873 -0.5851 0.9753 6.3069

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 29.53477 1.42662 20.703 < 2e-16 ***

disp -0.02731 0.01061 -2.574 0.01564 *

factor(cyl)6 -4.78585 1.64982 -2.901 0.00717 **

factor(cyl)8 -4.79209 2.88682 -1.660 0.10808

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.95 on 28 degrees of freedom

Multiple R-squared: 0.7837,Adjusted R-squared: 0.7605

F-statistic: 33.81 on 3 and 28 DF, p-value: 1.906e-09
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Example

I The cyl variable has 3 categories: 4, 6, and 8.

I The reference category is 4.

I Two dummy variables are created: factor(cyl)6 and factor(cyl)8.

I For 4-cylinder cars, the model is:

mpg = 29.53− 0.02731× disp + ε

I For 6-cylinder cars, the model is:

mpg = 29.53− 0.02731× disp− 4.79 + ε

I For 8-cylinder cars, the model is:

mpg = 29.53− 0.02731× disp− 4.79 + ε

How can we make the slope to depend on the cylinder?



Example
We can add the interaction term of disp and cyl to the model:

Call:

lm(formula = mpg ~ disp * factor(cyl), data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-3.4766 -1.8101 -0.2297 1.3523 5.0208

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 40.87196 3.02012 13.533 2.79e-13 ***

disp -0.13514 0.02791 -4.842 5.10e-05 ***

factor(cyl)6 -21.78997 5.30660 -4.106 0.000354 ***

factor(cyl)8 -18.83916 4.61166 -4.085 0.000374 ***

disp:factor(cyl)6 0.13875 0.03635 3.817 0.000753 ***

disp:factor(cyl)8 0.11551 0.02955 3.909 0.000592 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.372 on 26 degrees of freedom

Multiple R-squared: 0.8701,Adjusted R-squared: 0.8452

F-statistic: 34.84 on 5 and 26 DF, p-value: 9.968e-11



Example

I The model for 4-cylinder cars is:

mpg = 40.87− 0.13514× disp + ε

I The model for 6-cylinder cars is:

mpg = (40.87− 21.79) + (−0.13514 + 0.139)× disp + ε

I The model for 8-cylinder cars is:

mpg = (40.87− 18.84) + (−0.13514 + 0.1155)× disp + ε


