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Simple Linear Regression

Regression is a statistical method for estimating the relationships among variables.
THe simpest form of regression is simple linear regression:

yi = β0 + β1xi + εi.

I yi is the response variable (dependent variable).

I xi is the predictor variable (independent variable).

I β0 is the intercept.

I β1 is the slope.

I εi is the error term.
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Example
I y: ocular surface area

I x: width of the palprebal fissure



Assumptions

yi = β0 + β1xi + εi.

I Linearity: The relationship between x and y is linear.

I Independence: The errors are independent.

I Normality: The errors are normally distributed.

I Equal variance: The errors have constant variance.

For short, the LINE assumptions give:

yi = β0 + β1xi +N(0, σ2) ∀i
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Violations of Assumptions

I Linearity: Nonliear regression model.

I Independence: Structural equation model (SEM) in econometrics.

I Normality: εi could have a heavy-tailed distribution.

I Equal variance: Heteroscedasticity.



Some Statistics

yi = β0 + β1xi + εi.

We assume all xi’s are fixed and known. (not random variables!)

I E(yi) = β0 + β1xi is the mean response for a given xi.

I V ar(yi) = V ar(εi) = σ2 is the variance of the response.

I Cov(yi, yj) = Cov(εi, εj) for i 6= j. (Independence Assumption).

If we get the estimated coefficients β̂0 and β̂1,

I The fitted value for yi is ŷi = β̂0 + β̂1xi.

I The residual for yi is ε̂i = yi − ŷi.
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I The residual for yi is ε̂i = yi − ŷi.
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Estimation

yi = β0 + β1xi + εi.

Given the data points

we want to find the line that best fits the data points.



Ordinary Least Squares

The first approach is Ordinary Least Squares (OLS).

I For each possible parameter values β0 and β1, we can calculate the residual sum
of squares (RSS):

RSS(β0, β1) =
N∑
i=1

(yi − β0 − β1xi)2

I The OLS estimates are the values of β0 and β1 that minimize the RSS:

β̂0, β̂1 = arg min
β0,β1

RSS(β0, β1)
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The residual sum of squares is the sum of the squared distance between the data
points and the fitted line.
It is the vertical distance, not the orthogonal distance.
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OLS

In order to minimize the RSS, we first compute its partial derivatives.

RSS(β0, β1) =

n∑
i=1

(yi − β0 − β1xi)2

∂RSS

∂β0
= −2

n∑
i=1

(yi − β0 − β1xi) = −2
n∑
i=1

yi + 2Nβ0 + 2β1

n∑
i=1

xi

∂RSS

∂β1
= −2

n∑
i=1

(yi − β0 − β1xi)xi = −2

n∑
i=1

yixi + 2β0

n∑
i=1

xi + 2β1

n∑
i=1

x2i

To find the minimum, we set the partial derivatives to zero.



OLS

The estimating equations for OLS are:

0 = −2

n∑
i=1

yi + 2nβ0 + 2β1

n∑
i=1

xi (1)

0 = −2

n∑
i=1

yixi + 2β0

n∑
i=1

xi + 2β1

n∑
i=1

x2i (2)

Compute (1)×
∑

i xi − (2)× n:

0 = 2n
∑
i

xiyi − 2
∑
i

xi
∑
i

yi +

(∑
i

xi

)2

− n
∑
i

x2i

β1.

=⇒ β̂1 =

∑
i xiyi − n−1

∑
i xi
∑

i yi∑
i x

2
i − n−1 (

∑
i xi)

2 .
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OLS

β̂1 =

∑
i xiyi − n−1

∑
i xi
∑

i yi∑
i x

2
i − n−1 (

∑
i xi)

2 .

I The numerator is∑
i

xiyi − n−1
∑
i

xi
∑
i

yi = Sxy =
∑
i

(yi − ȳ)(xi − x̄)

I The denominator is

∑
i

x2i − n−1

(∑
i

xi

)2

= Sxx =
∑
i

(xi − x̄)2



OLS

Therefore,

β̂1 =
Sxy
Sxx

=
Cov(X,Y )

Var(X)

with

Sxy =
∑
i

(yi − ȳ)(xi − x̄) =
∑
i

yixi − n−1
∑
i

xi
∑
i

yi

Sxx =
∑
i

(xi − x̄)2 =
∑
i

x2i − n−1

(∑
i

xi

)2

From Eq. (1), we can get β̂0:
β̂0 = ȳ − β̂1x̄.
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OLS

We still have σ2 to estimate.

The easiest way is to estimate it from the residual sum of
squares:

σ̂2 =
RSS(β̂0, β̂1)

n− 2

I n− 2 is the degrees of freedom.

A quick formula in computing RSS(β̂0, β̂1) is

RSS(β̂0, β̂1) = Syy − β̂1Sxy = Syy − β̂21Sxx,

where

Syy =
∑
i

(yi − ȳ)2 =
∑
i

y2i − n−1

(∑
i

yi

)2

.
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OLS

Summary for OLS estimators:

β̂1 =
Sxy
Sxx

=
Cov(X,Y )

Var(X)

β̂0 = ȳ − β̂1x̄

σ̂2 =
RSS(β̂0, β̂1)

n− 2
=
Syy − β̂1Sxy

n− 2



Example (Textbook Example 12.8)

Some statistics:

n = 14
∑

xi = 890
∑

x2i = 67182∑
yi = 37.6

∑
y2i = 103.54

∑
xiyi = 2234.30



Example (Textbook Example 12.8)

We can compute the following statistics:

Sxx = 10603.43, Sxy = −155.99, Syy = 2.557

The estimators are

β̂1 =
Sxy
Sxx

=
−155.99

10603.43
= −0.0147

β̂0 = ȳ − β̂1x̄ =
37.6

14
− (−0.0147)× 890

14
= 3.62

σ̂2 =
Syy − β̂1Sxy

n− 2
=

2.557− (−0.0147)× (−155.99)

14− 2
= 0.022



Properties of OLS Estimators
I Because xi’s are fixed, Sxx is not a random variable.

I Sxy can be written as

Sxy =
∑

xiyi − n−1
∑

xi
∑

yi =
∑
i

[(xi − x̄) yi]

The highlighted yi’s are the only random variables and we have

yi ∼ N(β0 + β1xi, σ
2),

where β0 and β1 are the true parameters.

I Therefore, Sxy is a linear combination of normal random variables and is also
normally distributed,

Sxy ∼ N(β1Sxx, σ
2Sxx)

I Now we have

β̂1 =
Sxy
Sxx
∼ N(β1, σ

2S−1
xx )
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Properties of OLS Estimators

I For the intercept estimator, we have

β̂0 = ȳ − β̂1x̄ ∼ N(β0, (n
−1 + x̄2S−1

xx )σ2)

I For the variance estimator, we have

E(σ̂2) = σ2.
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Properties of OLS Estimators

Summary:

I All OLS estimators are unbiased:

E(β̂0) = β0

E(β̂1) = β1

E(σ̂2) = σ2

I The estimated standard errors (se) of the estimators are:

sβ̂0 =

√
(n−1 + x̄2S−1

xx )σ̂2

sβ̂1 =

√
S−1
xx σ̂2

sσ̂2 =

√
2σ̂4

n− 2



Confidence Interval

The (1− α) confidence interval for β1 is

β̂1 ± tα/2,n−2sβ̂1 .

I Confidence interval uses two-sided t-distribution with n− 2 degrees of freedom.

I It is t-distributed because we are estimating σ2 from the data.



Hypothesis Testing

Consider the following hypothesis testing:

H0 : β1 = 0 Ha : β1 6= 0.

Method 1: reject null if the CI does not cover 0:

reject null if 0 6∈ (β̂1 − tα/2,n−2sβ̂1 , β̂1 + tα/2,n−2sβ̂1)

Method 2: reject null if the test statistic

t =
β̂1
sβ̂1

is greater than tα/2,n−2 in absolute value.
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Hypothesis Testing

H0 : β1 = 0 Ha : β1 6= 0.

Method 3: reject null if the p-value

p = 2
(

1− Ft,n−2(|β̂1/sβ̂1 |)
)

is less than α.

I To test H0 : β1 > 0, we should use one-sided t-test.

I Same process for testing β0 = 0.
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Goodness of Fit

The variation in the response variable yi is

SST =
∑
i

(yi − ȳ)2

The variation explained by the regression model is

SSR =
∑
i

(ŷi − ȳ)2

The variation not explained by the regression model is

SSE =
∑
i

(yi − ŷi)2

We have
SST = SSR+ SSE
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Goodness of Fit

The coefficient of determination is defined as

R2 =
SSR

SST
= 1− SSE

SST
.

I R2 is the proportion of the variation in the response variable that is explained by
the regression model.

I R2 is between 0 and 1.

I R2 is a measure of the goodness of fit of the regression model.
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Residual Plot
The residual is defined as the difference between the observed value and the fitted
value:

ε̂i = yi − ŷi = yi − β̂0 − β̂1xi.

The residual plot is a scatter plot of the residuals against the fitted values.
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The QQ plot is a scatter plot of the quantiles of the residuals against the quantiles of
the normal distribution.
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I If the points are not on the line, then the residuals are not normally distributed.

I Light tails is usually not a problem.

I But heavy tails is a problem.
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