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An experiment is any activity or process whose outcome is subject to uncertainty.
» Flip a coin (outcome: head or tail)
» Toss a die (outcome: nummber 1 to 6)
» Measure the weight of an apple (outcome: a real number)

» A patient takes a drug (outcome: recovery or not)

The sample space is the set of all possible outcomes of an experiment, denoted by S.
» S ={H,T} for flipping a coin
» S={1,2,3,4,5,6} for tossing a die
> S =R, for measuring the weight of an apple
» S = {recovery, not recovery} for a patient taking a drug
» S={HH,HT,TH, TT} for flipping a coin twice
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Events

An event is a subset of the sample space.
» The event that observing one head when flipping a coin twice: A ={HT,TH}
» The event that observing an even number when tossing a die: B = {2,4,6}
» The event that the apple’s weight is less than 1: C ={z € Ry : x < 1} = (0,1)

> A special case is the null event: @, which is the event that never happens.

Operations on events
» The complement of an event A, denoted by A’, is the set of all outcomes in S
that are not in A.
» The union of two events A and B, denoted by AU B, is the set of all outcomes
that are in A or B.

» The intersection of two events A and B, denoted by AN B, is the set of all
outcomes that are in both A and B.
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Events
Consider the experiment that tossing a die twice.
» The sample space S contains 6 x 6 = 36 outcomes.
» The event that the the first toss is greater than the second is

A ={21,31,32,41,42,43,51, 52,53, 54,61, 62,63, 64,65}
» The event that the sum of two tosses is 7 is
B ={16,25,34,43,52,61}

> The event that the sum of two tosses is 7 and the first toss is greater than the

second is
C=ANB ={43,52,61}

> The event that the sum of two tosses is 7 or the first toss is greater than the
second is

D =AuUB=1{21,31,32,41,42,43,51,52,53, 54,61, 62, 63, 64, 65, 16, 25, 34}



Venn

Diagram

The Venn diagram is a visual representation of events.
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For example, it is easy to see that AUB = (ANB)U(A'NB)U(ANB).
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The probability of an event A, denoted by P(A), is a number between 0 and 1 that
quantifies the likelihood of A occurring.

» P(A) =0 means that A will never happen.
» P(A) =1 means that A will always happen.

Axioms of probability
1. P(A) > 0 for any event A.
2. P(S)=1.

3. For any sequence of mutually disjoint events Ay, Ao, ...

(04) -
=1 =1

Remark: A and B are mutually disjoint if AN B = @.
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Probability

Axioms of probability
1. P(A) > 0 for any event A.
2. P(S) =1

3. For any sequence of mutually disjoint events A1, Ao, ...,
oo oo
P (U Ai> => P(4)
i=1 i=1

Interpretations
1. The probability is always non-negative.
2. Because S contains every possible outcome, the probability of & is 1.
3. For disjoint events, the probability of their union is the sum of their probabilities.

Remark: The third axiom includes the finite case by setting A; = @ for i > N.
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Probability

Some properties of probability:

>

P(A")=1— P(A) for any event A. — either A happens or not.
This can be shown by observing that AN A’ = @, AU A’ = S and by Axiom 3,
1=P(S)=PAUA)=P(A)+ P(A).

P(2) = 0. — the null event never happens.

P(A) <1 for any event A. — the probability is always less than or equal to 1.
P(AUB)=P(A)+ P(B) — P(AN B) for any events A and B. — the
inclusion-exclusion principle.

This can be easily shown by the Venn diagram.

P(AUB) < P(A)+ P(B) for any events A and B. — the union bound.
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Probability

Consider tossing a die. Let the probability for each outcome as

P({1}) = P({2}) = --- = P({6}) = 1/6.
» The probability of observing an even number is
P({2,4,6}) = P({2}) + P({4}) + P({6}) = t + &t + & = 1. (Axiom 3)

» The probability of observing an odd number is
P({1,3,5}) =1—P({2,4,6}) =1— 3 = 1.

» The probability of observing a prime number is
P({2,3,5}) = P({2}) + P({3}) + P({5}) = 5 + 5 + § =

=1 (AX|om 3)
» The probability of observing an even prime number is P({2}) =

» Check the inclusion-exclusion principle:

P({1,3,5} U{2,3,5}) + P({1,3,5} N {2,3,5}) = P({1,3,5}) + P({2,3,5})
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Conditional Probability

For any two events A and B with P(B) > 0, the conditional probability of A given
Bis
P(ANB)
P(AB) = ———=
» P(A|B) is the probability of A given that B has occurred.
» P(A|B) is a number between 0 and 1.

» By multiplying P(B) on both sides, we have the multiplication rule:

P(AN B) = P(A|B)P(B).
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Independence

Two events A and B are independent if P(A|B) = P(A), and are dependent
otherwise.

» A and B are independent if and only if

P(AN B) = P(A)P(B)

» This definition of independence can be extended to more than two events:
Ay, Ag, ..., Ay, are mutually independent if for any subset A4; , A;,,..., A

’iky
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Conditional Probability and Independence Example

Consider flip a coin twice. The sample space is S = {HH,HT,TH,TT}. We can
assign equal probability to each outcome (i.e. 1/4)

» The event that the first toss is head is A = {HH, HT'} with P(A) =1/2.
» The event that the number of heads is 1 is B = {HT,TH} with P(B) =1/2.
» The conditional probability of A given B is

P(A|B) = P(]f(;f;) = 1721 = % = P(A).

Therefore, A and B are independent.
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Random Variable

For a given sample space S of some experiment, a random variable (rv) is any rule
that associates a number with each outcome in §. In mathematical language, a
random variable is a function whose domain is the sample space and whose range is

the set of real numbers.

» A discrete random variable is a random variable that can take on a countable
number of values.
» The number of heads when flipping a coin n times.
» The number of defective items in a batch of 100.
» The number of students in a class.
> A continuous random variable is a random variable that can take on an
uncountable number of values.
» The weight of an apple.
» The time it takes to complete a task.
» The temperature of a room.
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Discrete Random Variable

The probability distribution or probability mass function (pmf) of a discrete
random variable X is defined for every number z by p(z) = P(X = x).

» We use the convention in the textbook that P stands for probability of events and
p stands for probability distribution.

The cumulative distribution function (cdf) of a discrete random variable X is
defined for every number x by

F(z)=P(X <z)= ) p(y)

yy<w
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Discrete Random Variable

Consider toss a die twice. Let X be the sum of two tosses and let p be the pmf of X.

Then ) 1
p(5) = P(X =5) = P({14,23,32,41}) = o= = ¢

The cdf of X is
1 1 1 1 5

F(5) = P(X <5) = p(2) + p(3) +p(1) +p(5) = 5+ o+ o+ 5 = —
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Discrete Random Variable

The expected value or mean of a discrete random variable X is defined by
B(X)=> x-p(x)
xX
For a function g(X) of a discrete random variable X, the expected value of g(X) is

Elg(X)] =) g(z) - p(x)

The variance of a discrete random variable X is defined by

Var(X) = B[(X — E(X))?] = B(X?) — B(X)’



Discrete Random Variable

Let X and Y be two rvs and a and b be two constants. Then
> E(aX +bY)=aE(X)+bE(Y)
> Var(aX) = a*Var(X)
> Var(aX +bY) = a?Var(X) + b*Var(Y) + 2ab - Cov(X,Y)



Discrete Random Variable

Common discrete distributions:
» Bernoulli

> Binomial

» Poisson

> Geometric

>

Hypergeometric
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The probability density function (pdf) of a continuous random variable X is a
function f(z) such that for any two numbers a and b with a < b,

P(aSXSb):/bf(:r)dx

The cumulative distribution function (cdf) of a continuous random variable X is
defined for every number x by

Flz)=P(X <z) = /_ F(t)dt
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Continuous Random Variables

The expected value or mean of a continuous random variable X is defined by

For a function g(X) of a continuous random variable X, the expected value of g(X) is

E[g(X)] = / " (@) f(x)da

—00

The variance of a continuous random variable X is defined by

Var(X) = B[(X — E(X))?] = B(X?) — B(X)?
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Continuous Random Variables

Let X be a uniform random variable on the interval [0, 1]. Then its pdfis f(z) =1 for
0 <z <1and f(x) = 0 otherwise because for any a and b with 0 < a < b <1,

b
P(aSXSb):/ldx:b—a
The cdf of X is (for z € [0, 1])
F(a:):P(XSx):/ lde =z
0

and F(z) =0 for z <0 and F(z) =1 for x > 1.
The expected value of X is

1 1
E(X)= / xdr = -
0 2
and the variance of X is

Var(X) = E(X?) — E(X)* =



Continuous Random Variables

Common continuous distributions:
» Uniform

Normal

Exponential

Gamma

>
>
>
> Beta
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variables, please replace integrals by summations.



Joint Distribution

We will take continuous random variables as an example. For discrete random
variables, please replace integrals by summations.

The joint distribution of two continuous random variables X and Y is defined by the
joint pdf f(z,y) such that for any two-dimensional region A,

PUX,Y) € A) = / /A (@, y)dzdy



Joint Distribution

We will take continuous random variables as an example. For discrete random
variables, please replace integrals by summations.

The joint distribution of two continuous random variables X and Y is defined by the
joint pdf f(z,y) such that for any two-dimensional region A,
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Joint Distribution

We will take continuous random variables as an example. For discrete random
variables, please replace integrals by summations.

The joint distribution of two continuous random variables X and Y is defined by the
joint pdf f(z,y) such that for any two-dimensional region A,

PUX,Y) € A) = / /A (@, y)dzdy

The marginal distribution of X is the pdf of X:

fx@ = [ fady
The conditional distribution of Y given X = z is the pdf of Y given X = x:

frix(ylz) = J;fgj))
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Let X and Y be two continuous random variables with joint pdf f(z,y). The
expected value of a function g(X,Y) is
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Joint Distribution

Let X and Y be two continuous random variables with joint pdf f(z,y). The
expected value of a function g(X,Y) is

Elg(X,Y)] = //g(w,y)f(%y)drcdy

The covariance of X and Y is
Covo(X,Y)=FE[(X-EX))(Y -EY))]=EXY)-EX)E(®Y)

The correlation of X and Y is

Cov(X,Y)

Corr(X,¥) = VVar(X)Var(Y)
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Joint Distribution

X and Y are independent if f(z,y) = fx(x)fy(y) for all x and y.

X and Y are uncorrelated if Cov(X,Y) = 0.

» Independence implies uncorrelated, but uncorrelated does not imply independence.

» Example: X is a standard normal random variable and Z is a Rademarcher
random variable (random £1). Let Y = XZ. Then X and Y are uncorrelated
but not independent.



