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Sample Space

An experiment is any activity or process whose outcome is subject to uncertainty.

I Flip a coin (outcome: head or tail)

I Toss a die (outcome: nummber 1 to 6)

I Measure the weight of an apple (outcome: a real number)

I A patient takes a drug (outcome: recovery or not)

The sample space is the set of all possible outcomes of an experiment, denoted by S.

I S = {H,T} for flipping a coin

I S = {1, 2, 3, 4, 5, 6} for tossing a die

I S = R+ for measuring the weight of an apple

I S = {recovery, not recovery} for a patient taking a drug

I S = {HH,HT, TH, TT} for flipping a coin twice
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Events

An event is a subset of the sample space.

I The event that observing one head when flipping a coin twice: A = {HT, TH}
I The event that observing an even number when tossing a die: B = {2, 4, 6}
I The event that the apple’s weight is less than 1: C = {x ∈ R+ : x < 1} = (0, 1)

I A special case is the null event: ∅, which is the event that never happens.

Operations on events

I The complement of an event A, denoted by A′, is the set of all outcomes in S
that are not in A.

I The union of two events A and B, denoted by A ∪B, is the set of all outcomes
that are in A or B.

I The intersection of two events A and B, denoted by A ∩B, is the set of all
outcomes that are in both A and B.
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Events
Consider the experiment that tossing a die twice.

I The sample space S contains 6× 6 = 36 outcomes.

I The event that the the first toss is greater than the second is

A = {21, 31, 32, 41, 42, 43, 51, 52, 53, 54, 61, 62, 63, 64, 65}

I The event that the sum of two tosses is 7 is

B = {16, 25, 34, 43, 52, 61}

I The event that the sum of two tosses is 7 and the first toss is greater than the
second is

C = A ∩B = {43, 52, 61}
I The event that the sum of two tosses is 7 or the first toss is greater than the

second is

D = A ∪B = {21, 31, 32, 41, 42, 43, 51, 52, 53, 54, 61, 62, 63, 64, 65, 16, 25, 34}
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Venn Diagram

The Venn diagram is a visual representation of events.

For example, it is easy to see that A ∪B = (A ∩B′) ∪ (A′ ∩B) ∪ (A ∩B).



Probability

The probability of an event A, denoted by P (A), is a number between 0 and 1 that
quantifies the likelihood of A occurring.

I P (A) = 0 means that A will never happen.

I P (A) = 1 means that A will always happen.

Axioms of probability

1. P (A) ≥ 0 for any event A.

2. P (S) = 1.

3. For any sequence of mutually disjoint events A1, A2, . . .,

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai)

Remark: A and B are mutually disjoint if A ∩B = ∅.
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Axioms of probability
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3. For any sequence of mutually disjoint events A1, A2, . . .,

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai)

Interpretations

1. The probability is always non-negative.

2. Because S contains every possible outcome, the probability of S is 1.

3. For disjoint events, the probability of their union is the sum of their probabilities.

Remark: The third axiom includes the finite case by setting Ai = ∅ for i > N .
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Probability

Some properties of probability:

I P (A′) = 1− P (A) for any event A. — either A happens or not.
This can be shown by observing that A ∩A′ = ∅, A ∪A′ = S and by Axiom 3,
1 = P (S) = P (A ∪A′) = P (A) + P (A′).

I P (∅) = 0. — the null event never happens.

I P (A) ≤ 1 for any event A. — the probability is always less than or equal to 1.

I P (A ∪B) = P (A) + P (B)− P (A ∩B) for any events A and B. — the
inclusion-exclusion principle.
This can be easily shown by the Venn diagram.

I P (A ∪B) ≤ P (A) + P (B) for any events A and B. — the union bound.
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Probability

Consider tossing a die. Let the probability for each outcome as
P ({1}) = P ({2}) = · · · = P ({6}) = 1/6.

I The probability of observing an even number is
P ({2, 4, 6}) = P ({2}) + P ({4}) + P ({6}) = 1

6 + 1
6 + 1

6 = 1
2 . (Axiom 3)

I The probability of observing an odd number is
P ({1, 3, 5}) = 1− P ({2, 4, 6}) = 1− 1

2 = 1
2 .

I The probability of observing a prime number is
P ({2, 3, 5}) = P ({2}) + P ({3}) + P ({5}) = 1

6 + 1
6 + 1

6 = 1
2 . (Axiom 3)

I The probability of observing an even prime number is P ({2}) = 1
6 .

I Check the inclusion-exclusion principle:

P ({1, 3, 5} ∪ {2, 3, 5}) + P ({1, 3, 5} ∩ {2, 3, 5}) = P ({1, 3, 5}) + P ({2, 3, 5})
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Conditional Probability

For any two events A and B with P (B) > 0, the conditional probability of A given
B is

P (A|B) =
P (A ∩B)

P (B)
.

I P (A|B) is the probability of A given that B has occurred.

I P (A|B) is a number between 0 and 1.

I By multiplying P (B) on both sides, we have the multiplication rule:

P (A ∩B) = P (A|B)P (B).
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Independence

Two events A and B are independent if P (A|B) = P (A), and are dependent
otherwise.

I A and B are independent if and only if

P (A ∩B) = P (A)P (B)

I This definition of independence can be extended to more than two events:
A1, A2, . . . , An are mutually independent if for any subset Ai1 , Ai2 , . . . , Aik ,

P (Ai1 ∩Ai2 ∩ · · · ∩Aik) = P (Ai1)P (Ai2) · · ·P (Aik).
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A1, A2, . . . , An are mutually independent if for any subset Ai1 , Ai2 , . . . , Aik ,
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Conditional Probability and Independence Example

Consider flip a coin twice. The sample space is S = {HH,HT, TH, TT}. We can
assign equal probability to each outcome (i.e. 1/4)

I The event that the first toss is head is A = {HH,HT} with P (A) = 1/2.

I The event that the number of heads is 1 is B = {HT, TH} with P (B) = 1/2.

I The conditional probability of A given B is

P (A|B) =
P (A ∩B)

P (B)
=

1/4

1/2
=

1

2
= P (A).

Therefore, A and B are independent.
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Random Variable

For a given sample space S of some experiment, a random variable (rv) is any rule
that associates a number with each outcome in S. In mathematical language, a
random variable is a function whose domain is the sample space and whose range is
the set of real numbers.

I A discrete random variable is a random variable that can take on a countable
number of values.
I The number of heads when flipping a coin n times.
I The number of defective items in a batch of 100.
I The number of students in a class.

I A continuous random variable is a random variable that can take on an
uncountable number of values.
I The weight of an apple.
I The time it takes to complete a task.
I The temperature of a room.
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Discrete Random Variable

The probability distribution or probability mass function (pmf) of a discrete
random variable X is defined for every number x by p(x) = P (X = x).

I We use the convention in the textbook that P stands for probability of events and
p stands for probability distribution.

The cumulative distribution function (cdf) of a discrete random variable X is
defined for every number x by

F (x) = P (X ≤ x) =
∑
y:y≤x

p(y)
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Discrete Random Variable

Consider toss a die twice. Let X be the sum of two tosses and let p be the pmf of X.

Then

p(5) = P (X = 5) = P ({14, 23, 32, 41}) = 4

36
=

1

9

The cdf of X is

F (5) = P (X ≤ 5) = p(2) + p(3) + p(4) + p(5) =
1

36
+

1

18
+

1

12
+

1

9
=

5

18
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Discrete Random Variable

The expected value or mean of a discrete random variable X is defined by

E(X) =
∑
x

x · p(x)

For a function g(X) of a discrete random variable X, the expected value of g(X) is

E[g(X)] =
∑
x

g(x) · p(x)

The variance of a discrete random variable X is defined by

V ar(X) = E[(X − E(X))2] = E(X2)− E(X)2
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Discrete Random Variable

Let X and Y be two rvs and a and b be two constants. Then

I E(aX + bY ) = aE(X) + bE(Y )

I V ar(aX) = a2V ar(X)

I V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2ab · Cov(X,Y )



Discrete Random Variable

Common discrete distributions:

I Bernoulli

I Binomial

I Poisson

I Geometric

I Hypergeometric



Continuous Random Variables

The probability density function (pdf) of a continuous random variable X is a
function f(x) such that for any two numbers a and b with a < b,

P (a ≤ X ≤ b) =

∫ b

a
f(x)dx

The cumulative distribution function (cdf) of a continuous random variable X is
defined for every number x by

F (x) = P (X ≤ x) =

∫ x

−∞
f(t)dt
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Continuous Random Variables
Let X be a uniform random variable on the interval [0, 1]. Then its pdf is f(x) = 1 for
0 ≤ x ≤ 1 and f(x) = 0 otherwise because for any a and b with 0 ≤ a ≤ b ≤ 1,

P (a ≤ X ≤ b) =

∫ b

a
1dx = b− a

The cdf of X is (for x ∈ [0, 1])

F (x) = P (X ≤ x) =

∫ x

0
1dx = x

and F (x) = 0 for x < 0 and F (x) = 1 for x > 1.
The expected value of X is

E(X) =

∫ 1

0
xdx =

1

2

and the variance of X is

V ar(X) = E(X2)− E(X)2 =
1

3
− 1

4
=

1

12
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Continuous Random Variables

Common continuous distributions:

I Uniform

I Normal

I Exponential

I Gamma

I Beta



Joint Distribution
We will take continuous random variables as an example. For discrete random
variables, please replace integrals by summations.

The joint distribution of two continuous random variables X and Y is defined by the
joint pdf f(x, y) such that for any two-dimensional region A,

P ((X,Y ) ∈ A) =

∫∫
A
f(x, y)dxdy

The marginal distribution of X is the pdf of X:

fX(x) =

∫ ∞
−∞

f(x, y)dy

The conditional distribution of Y given X = x is the pdf of Y given X = x:

fY |X(y|x) = f(x, y)

fX(x)
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Joint Distribution

Let X and Y be two continuous random variables with joint pdf f(x, y). The
expected value of a function g(X,Y ) is

E[g(X,Y )] =

∫∫
g(x, y)f(x, y)dxdy

The covariance of X and Y is

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY )− E(X)E(Y )

The correlation of X and Y is

Corr(X,Y ) =
Cov(X,Y )√

V ar(X)V ar(Y )
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Joint Distribution

X and Y are independent if f(x, y) = fX(x)fY (y) for all x and y.

X and Y are uncorrelated if Cov(X,Y ) = 0.

I Independence implies uncorrelated, but uncorrelated does not imply independence.

I Example: X is a standard normal random variable and Z is a Rademarcher
random variable (random ±1). Let Y = XZ. Then X and Y are uncorrelated
but not independent.
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