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SUTVA Assumption

The Stable Unit Treatment Value Assumption (SUTVA) is a fundamental assumption
in causal inference.

I The potential outcomes for each unit do not depend on the treatment assignment
of other units.

SUTVA is violated when the potential outcomes of one unit depend on the treatment
assignment of other units.
Such phoneomena are often referred to as interference or spillover effects.

I Social networks

I Transportation networks

I Field experiments



SUTVA Assumption

The Stable Unit Treatment Value Assumption (SUTVA) is a fundamental assumption
in causal inference.

I The potential outcomes for each unit do not depend on the treatment assignment
of other units.

SUTVA is violated when the potential outcomes of one unit depend on the treatment
assignment of other units.
Such phoneomena are often referred to as interference or spillover effects.

I Social networks

I Transportation networks

I Field experiments



Potential Outcomes

I Let Z = (Z1, . . . , ZN ) ∈ {0, 1}N be the treatment assignment vector for all N
units.

I Let Yi(Z) be the potential outcome for unit i given treatment assignment vector
Z.

I SUTVA assumes that for all i,

Yi(Z) = Yi(Z
′) whenever Zi = Z ′i

The consequence is we can simply write Yi(Zi) instead of Yi(Z).

I If SUTVA is violated, we cannot write Yi(Z) as Yi(Zi) because Yi depends on the
treatment assignment of other units.
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Interference

To represent the dependence of Yi on Zi′ for i′ 6= i, we consider a directed graph G.

I Vertices: V = {1, . . . , N}, representing the units.

I Edges: E = {(i, i′) : Yi depends on Zi′}.
I The indegree neighbor of unit i is defined as

Ni = {i′ : (i′, i) ∈ E}.

I G is often assumed to be observed and fixed for the dataset.

1 2
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N2 = {1}
N3 = {1, 2}
N4 = {3}
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SUTNVA Assumption

When the interference is present, we assume the Stable Unit Treatment on
Neighborhood Value Assumption (SUTNVA):

1. For each i, for any two treatment assignments Z = (Zi, ZNi , ZN−i) and
Z ′ = (Z ′i, Z

′
Ni
, Z ′N−i

), we have

Yi(Z) = Yi(Z
′) whenever Zi = Z ′i and ZNi = Z ′Ni

2. For each i,
Y obs
i = Yi(Z)

Under SUTNVA, we can write the potential outcome as

Yi( Zi︸︷︷︸
direct treatment

, ZNi︸︷︷︸
interference

)
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Potential Outcomes

For demonstration purpose, we consider a simpler case the the interference graph G is
undirected.

Inteference Graph

1 2

34

Neighbors

N1 = {2, 3, 4}
N2 = {1, 3}
N3 = {1, 2, 4}
N4 = {1, 3}

Potential Outcomes

Y obs
1 = Y1(Z1, Z2, Z3, Z4)

Y obs
2 = Y2(Z2, Z1, Z3)

Y obs
3 = Y3(Z3, Z1, Z2, Z4)

Y obs
4 = Y4(Z4, Z1, Z3)



Exposure Mapping

The exposure mapping is a function gi : {0, 1}Ni → Gi for all i, such that SUTNVA
holds for Gi = gi(ZNi):

Yi(Z) = Yi(Z
′) whenever Zi = Z ′i and gi(ZNi) = gi(Z

′
Ni
)

We can write the potential outcomes under interference as

Yi(Zi, Gi) with Gi = gi(ZNi).
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Exposure Mapping

Common choices of exposure mapping:

I number of treated neighbors:

Gi =
∑
i′∈Ni

Zi′

I proportion of treated neighbors:

Gi = N−1i

∑
i′∈Ni

Zi′ ,

where Ni = |Ni| is the number of neighbors of unit i.

I heterogeneous interference from neighbors:

Gi =
∑
i′∈Ni

wii′Zi′ ,

where wii′ is usually determined by the distance between their covariates.



Exposure Mapping

I trivial exposure mapping:
Gi = ZNi

I Consequences of misspecification of exposure mapping:

Aronow & Samii (2017), Estimating Average Causal Effects Under General
Interference. AOAS



Exposure Mapping



Entanglement between Treatment and Interference

Consider the assignment mechanisum:

P (Z,G |X,Y,G)

I Z = (Z1, . . . , ZN ) is the treatment assignment vector.

I G = (G1, . . . , GN ) is the interference exposure vector.

I X = (X1, . . . , XN ) is the covariate vector.

I Y = {Yi(z, g), i = 1, . . . , N : z ∈ {0, 1}, g ∈ Gi} is all potential outcomes.

I G is the interference graph.

The biggest problem in the inference framework is that G is a deterministic function of
Z given all the conditions.
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The unconfoundedness condition now becomes:
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I Any randomization on the treatment that is independent of Xi satisfies the
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Causal Effect

I Unit-level direct treatment effect:

τ
(d)
i (g) = Yi(1, g)− Yi(0, g)

I Unit-level indirect/spillover treatment effect:

τ
(i)
i (g, g′; z) = Yi(z, g)− Yi(z, g′)

I Unit-level total treatment effect: (often the most interesting one)

τ
(t)
i = Yi(1, g)− Yi(0, g)

where
g = gi(1), g = gi(0).

I The population average treatment effects are defined as the average of the
unit-level treatment effects.



Average Dose Response Function

We define the following populational average potential outcomes:

µ(z, g) = E[Yi(z, g) | i ∈ Vg], ∀z ∈ {0, 1}, g ∈ G,

where Vg = {i : g ∈ Gi} is the set of units with possible exposure g and G =
⋃N

i=1 Gi is
the set of all possible exposures.

It is also called the average dose response function (ADRF).

The population average treatment effects are defined as the contrast of ADRFs.
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Observational Study

Now consider the observational study problem.

I Observed, fixed interference graph G.

I Observed confounders X.

I Observed treatment assignment Z.

I Observed interference exposure G — usually computed from Z and G.

Goal: estimate the casual effects, as well as µ(z, g).
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Propensity Score

The joint propensity score of (z, g) for unit i is

ψ(z; g;x) = P (Zi = z,Gi = g | Xi = x)

Assumptions used here:

I Unconfoundedness.

I The probability depends on its own covariates Xi only.

The joint propensity score works as a balancing score:

Yi(z, g) ⊥⊥ Zi, Gi | ψ(z; g;Xi) ∀z, g
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Propensity Score
The propensity score can be expanded as

ψ(z; g;x) = P (Gi = g | Zi = z,Xz
i = xz)P (Zi = z | Xg

i = xg)

where Xg
i and Xz

i are the covariates that are used to predict Zi and Gi, respectively.

I The first term is the neighborhood propensity score:

P (Gi = g | Zi = z,Xz
i = xz) = λ(g; z;xg)

I The second term is the individual propensity score:

P (Zi = z | Xg
i = xg) = φ(z;xz)

They jointly satisfy the unconfoundedness condition:

Zi, Gi ⊥⊥ Yi(z, g) | λ(g; z;Xg
i ), φ(z;X

z
i ) ∀z, g
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Stratification Strategy
1. Stratification on the individual propensity score φ(z;Xz

i ):
1.1 Fit φ(1;Xz

i ) using logistic regression.
1.2 Divide the units into J strata, B1, . . . , BJ , based on the estimated propensity score.
1.3 We approximately have Zi ⊥⊥ Xz

i | i ∈ Bj for any j.

2. Estimation within each stratum:
2.1 Fit λ(g; z;Xg

i ) using logistic regression.

2.2 Fit a parametric model Yi(z, g) ∼ Zi +Gi + λ̂i.
2.3 For the pair (z, g), for each eligible unit, make a prediction of Yi(z, g) using the

fitted model.
2.4 The estimator is

µ̂j(z, g) = |Bg
j |
−1
∑
i∈Bg

j

Ŷi(z, g)

3. The final estimator is

µ̂(z, g) =

J∑
j=1

µ̂j(z, g)π
g
j

where πgj = |Bg
j |/|Bj | is the proportion of units in stratum j with exposure g.
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Stratification Strategy

More details in
Forastiere, Airoldi, & Mealli (2020). Identication and estimation of treatment and
interference effects in observational studies on networks. JASA.

Why parametric model in the second step: for example,

I A network of N = 1000 units.

I Each unit has |Ni| = 4 neighbors.

I Nt = 500 units are randomly assigned to treatment.

I We want to estimate µ(1, 2) for exposure mapping of number of treated neighbors.

I The expected number of units that are exposed to (z, g) = (1, 2) is

≈ 1000× 1

2
×
(
4

2

)
× 1

24
≈ 188� 1000.

I Use parametric model to “impute” the potential outcomes for other units.
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Empirical Matching

Now we consider a model-free approach.
Suppose we want to estimate the following effect:

µ̂(z, g)− µ̂(z′, g′)

I A natural way is to find two subsets of the samples:

A = {i : Zi = z,Gi = g}, B = {i : Zi = z′, Gi = g′}.

I The average treatment effect can be estimated based on these two sets of units
using, e.g., matching methods.

I Drawback 1: Small sample size.

I Drawback 2: Correlation.
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Experimental Design

Due to the complicated nature of the interference problems, experimental design
approaches are often more prefered over the observational study approaches.

For the further demonstrations, we consider the following exposure mapping:

gi(ZNi) = |Ni|−1
∑
i′∈Ni

Zi′

The proportion of treated neighbors.

The total treatment effect becomes

τ (t) = µ(1, 1)− µ(0, 0).
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Ego-Centric Design

An ego-cluster consists of a unit (ego center) and all its neighbors (alters).

In an ego-centric design.

I Find maximal disjoint ego-clusters C1, . . . , CK from the interference graph.

I Randomly assign half of the ego-clusters to treatment and half to control.

I The total treatment effect is estimated by the difference-in-means estimator on
the ego-center’s outcomes.
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Ego-Centric Design

Saint-Jacques, Varshney, Simpson, & Xu (2019). Using Ego-Clusters to Measure
Network Effects at LinkedIn.



Ego-Centric Design

Advntages:

I Easy control of the interference.

I Similar procedure as the RCT.

Disadvantages:

I Limited sample size.

I Require sparse interference graph.



Ego-Centric Design

Advntages:

I Easy control of the interference.

I Similar procedure as the RCT.

Disadvantages:

I Limited sample size.

I Require sparse interference graph.



Independent-Set Design
An independent set is a subset of the vertices in a graph such that no two vertices in
the subset are adjacent.

In an independent-set design,
I Find a maximal independent set I from the interference graph. Call the rest of

the vertices the auxiliary set A.
I We focus on the units in I. Their interference exposure is GI = ΓZA, where Γ is

the (normalized) adjacency matrix between I and A.
I ZA is chosen to maximize the variance of the interference exposure:

ZT
AΓT

[
I − n−1I 11T

]
ΓZA.

I Units in I are assigned according to the interference exposure:

Zi =

{
1 if Gi ≥ 0.5

0 otherwise

I The total treatment effect is estimated by the difference-in-means estimator on
the units in I.
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Independent-Set Design

Cai, Zhang, & Airoldi (2025). Independent-Set Design of Experiments for Estimating
Treatment and Spillover Effects under Network Interference. ICLR.



Independent-Set Design

Advantages:

I Independent control on the treatment and interference.

I Large independent set size (compared to ego-centeric design) with high probability.

Disadvantages:

I Computation of the maximal independent set is NP-hard.

I Could have bias.

I Require sparse interference graph.
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Randomized Saturation Design

In a randomized saturation design,

I Units are divided into K clusters.

I A set of proportions π = {π1, . . . , πK} is randomly assigned to the clusters.
W.L.O.G., assume cluster k is assigned πk.

I For the Nk units in cluster k, πkNk units are randomly assigned to treatment and
the rest are assigned to control.

I The causal effects are estimated by the difference-in-means.



Randomized Saturation Design

π1 = 2/3 π2 = 1/2

π3 = 1/6 π4 = 5/6

Population: A collection of J clusters of units.

Two-step Randomization:

1. Randomly generate a proportion vector
π = [π1, . . . , πJ ] from Π.

2. Randomly assign nj = bπjNjc units in
cluster j to treatment.

Example: A realization of treatment assign-
ment generated by a randomized saturation
design where the realized proportion vector is
π =

[
2
3 ,

1
2 ,

1
6 ,
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]
.

: treated units : control units
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Randomized Saturation Design

Advantages:

I Easy to implement.

I Rough control of the interference.

Disadvantages:

I Bias from inter-cluster interference.

I Require partial interference assumption (in oppose to our local interference
assumption).

Gi = proportion of treated unit in its cluster
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Randomized Saturation Design

I Proposed by Hudgens and Halloran (2008). Toward causal inference with
interference. JASA.

I Theoretical properties: Jiang, Imai & Malani (2022). Statistical inference and
power analysis for direct and spillover effects in two-stage randomized
experiments. Biometrics.

I Common clustering strategies:
I Community detection algorithm. (tons of reference here)
I Randomly assign units to clusters. Ugandar & Yin (2020). Randomized Graph

Cluster Randomization.
I Sample disjoint clusters from the population.

I Critization on poor clustering structures:
Cai, Pouget-Abadie, & Airoldi (2022). Optimizing Randomized and Deterministic
Saturation Designs under Interferenc.

I In practice, to estimate the total treatment effect, the proportion vector has K/2
1’s and K/2 0’s.
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Thank you for joining the workshop!

Contact:
Me chencheng.cai@wsu.edu
CISER ciser.info@wsu.edu


