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Unconfoundedness Assumption

The unconfoundedness assumption between treatment and outcome is:

Wi ⊥⊥ (Yi(0), Yi(1)) | Xi.

I Problem: in reality, we may not include all the confounders in Xi.

I Solution: we design a randomized experiment such that Wi is independent of
(Yi(0), Yi(1)) unconditionally.

I New problem: the units may not follow the assigned treatment.

I Solution: we need to take the compliance issue into account.
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The Workflow with Non-compliance

Zi −→W obs
i −→ Y obs

i

I Zi: the treatment assignment (1: treatment, 0: control)

I W obs
i : the observed treatment status (1: treatment, 0: untreated)

I Y obs
i : the observed outcome

Remark:

I Unconfoundedness condition for Zi and Yi holds.

I Unconfoundedness condition for Wi and Yi does not hold.

Consequences:

I We cannot estiamte the average causal effects by the difference in means for the
assigned treated group and the assigned control group.

I We cannot estimate the average causal effects by the difference in means for the
observed treated group and the observed control group.
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Non-compliance

We view the treatment received Wi a deterministic varaible given the treatment
assignment Zi for unit i.
Then for each unit i, the treatment received Wi has the potential outcomes:

Wi(Zi = 1) and Wi(Zi = 0)

The observed treatment status is:

W obs
i = Wi(1)Zi +Wi(0)(1− Zi).



Non-compliance

I Compliers: Wi(1) = 1 and Wi(0) = 0.

I Always-takers: Wi(1) = 1 and Wi(0) = 1.

I Never-takers: Wi(1) = 0 and Wi(0) = 0.

I Defiers: Wi(1) = 0 and Wi(0) = 1.

For convience of notation, we denote:

Ui =


c if Wi(1) = 1 and Wi(0) = 0

a if Wi(1) = 1 and Wi(0) = 1

n if Wi(1) = 0 and Wi(0) = 0

d if Wi(1) = 0 and Wi(0) = 1
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Non-compliance

Non-compliance status is latent.

I Zi = 1 and W obs
i = 1: Compliers or Always-takers.

I Zi = 1 and W obs
i = 0: Defiers or Never-takers.

I Zi = 0 and W obs
i = 1: Always-takers or Defiers.

I Zi = 0 and W obs
i = 0: Compliers or Never-takers.



Potential Outcomes

The potential outcome for unit i under assignment Zi and received treatment Wi is:

Yi(Zi,Wi).

Because Wi is deterministic given Zi, the potential outcome only depends on the
assigned treatment Zi that is

Yi(Zi) = Yi(Zi,Wi(Zi)).
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Potential Outcomes

Some potential outcomes are not observable under any assignment:

I Compliers: Yi(1, 0) and Yi(0, 1).

I Always-takers: Yi(1, 0), Yi(0, 0).

I Never-takers: Yi(1, 1), Yi(0, 1).

I Defiers: Yi(1, 1), Yi(0, 0).
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The observable potential outcomes are:

I Compliers: Yi(1) = Yi(1, 1) and Yi(0) = Yi(0, 0).

I Always-takers: Yi(1) = Yi(1, 1) and Yi(0) = Yi(0, 1).

I Never-takers: Yi(1) = Yi(1, 0) and Yi(0) = Yi(0, 0).

I Defiers: Yi(1) = Yi(1, 0) and Yi(0) = Yi(0, 1).

Note:

I We can observed two out of the four potential outcomes for each unit under all
possible assignments.

I We can observed one out of the two observable potential outcomes for each unit
under each assignment.
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Intention-to-Treat Effect

By ignoring the non-compliance, we can estimate the effect of the assignment on the
outcome by the difference in means:

ÎTTY =
1

Nt

N∑
i=1

ZiY
obs
i − 1

Nc

N∑
i=1

(1− Zi)Y obs
i .

as well as the effect of the assigned treatment on the received treatment:

ÎTTW =
1

Nt

N∑
i=1

ZiW
obs
i − 1

Nc

N∑
i=1

(1− Zi)W obs
i .

Nt and Nc are the number of units assigned with treatment and control respectively.



Intention-to-Treat Effect

By ignoring the non-compliance, we can estimate the effect of the assignment on the
outcome by the difference in means:
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Intention-to-Treat Effect

Under the randomization of Z assumption:

Zi ⊥⊥ (Wi(0),Wi(1), Yi(0), Yi(1)),

Both ÎTTY and ÎTTW are unbiased estimators of the average treatment effect on the
assigned treatment.

But, the ITT effect is usually not the causal effect of interest.
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Estimands

Use law of total expectation, we can write the true ITT effects in terms of the average
effect from different compliance types:

ITTY = E(Yi(1)− Yi(0))

= E(Yi(1)− Yi(0) | Ui = c)P (Ui = c) + E(Yi(1)− Yi(0) | Ui = a)P (Ui = a)

+ E(Yi(1)− Yi(0) | Ui = n)P (Ui = n) + E(Yi(1)− Yi(0) | Ui = d)P (Ui = d)

Nowe we check the four terms:

I Yi(1)− Yi(0) | Ui = c is Yi(1, 1)− Yi(0, 0) | Ui = c, the causal effect.

I Yi(1)− Yi(0) | Ui = a is Yi(1, 1)− Yi(0, 1) | Ui = a, the ITT effect.

I Yi(1)− Yi(0) | Ui = n is Yi(1, 0)− Yi(0, 0) | Ui = n, the ITT effect.

I Yi(1)− Yi(0) | Ui = d is Yi(1, 0)− Yi(0, 1) | Ui = d, revese causal effect.
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Additional Assumptions

Monotonicity Assumption / No-difiers Assumption:

Di(1) ≥ Di(0) for all i.

Exclusion Restriction Assumption:

Yi(0) = Yi(1) for all always-takers and never-takers.
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Estimand

Under the randomization of Z assumption, the monotonicity assumption and the
exclusion restriction assumption, the ITT effect can be expressed as:

ITTY = E(Yi(1)− Yi(0) | Ui = c)P (Ui = c)

The part E(Yi(1)− Yi(0) | Ui = c) is called the local average treatment effect
(LATE) or the compliers average treatment effect (CATE).
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The ITT effect on the received treatment can be expressed as:
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under the previous assumptions.

Furthermore,

CATE =
ITTY
ITTW

.
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Estimator

The instrumental variable (IV) estimator or Wald estimator is:

ĈATE
iv

=
ÎTTY

ÎTTW

Intuition:

∆Y

∆W
=

∆Y/∆Z

∆W/∆Z

I Randomization assumption: Z affects Y through W .

I Monotonicity assumption: the numerator/denumerator is estimable.

I Exclusion restriction assumption: ∆W 6= 0.
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ÎTTW

Intuition:

∆Y

∆W
=

∆Y/∆Z

∆W/∆Z

I Randomization assumption: Z affects Y through W .

I Monotonicity assumption: the numerator/denumerator is estimable.

I Exclusion restriction assumption: ∆W 6= 0.



Variance

For the variance of the IV estimator,

I Method 1: delta’s method.

I Method 2: bootstrap.

I Method 3: Neyman’s formula:

Var

(
ĈATE

iv
)

= Var

(
ÎTTY − CATE · ÎTTW

ÎTTW

)

The numerator is the difference-in-means estimator for the adjusted outcome:

Ỹ obs
i = Y obs

i − ĈATE
iv
W obs
i .



Instrumental Variable

An instrumental variable is a variable that is correlated with the received treatment
but not correlated with the potential outcomes.

In our previous case:

I Zi is correlated with W obs
i by removing defiers.

I Zi is not correlated with Yi(1), Yi(0) by randomization assumption.

I Zi is an instrumental variable for W obs
i .
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Regarding the Assumptions

Randomization Assumption:

I Usually holds in randomized experiments.

Exclusion Restriction Assumption:

I Usually holds in a double-blinded experiments.

I May not hold in a single-blinded experiments (placebo-effect).

Monotonicity Assumption:

I Usually holds in a one-sided non-compliance situation.

I Also holds when control group is passively tracked
– W obs

i = 0 for the control group.



Regarding the Assumptions

If we relax the monotonicity assumption, then

ITTY = E(Yi(1)− Yi(0) | Ui = c)P (Ui = c) + E(Yi(1)− Yi(0) | Ui = d)P (Ui = d)

ITTW = P (Ui = c)− P (Ui = d)

The ratio becomes:

ITTY
ITTW

= E(Yi(1)− Yi(0) | Ui = c)
P (Ui = c)

P (Ui = c)− P (Ui = d)

+ E(Yi(1)− Yi(0) | Ui = d)
P (Ui = d)

P (Ui = c)− P (Ui = d)

It is the weighted average of the average causal effect on the compliers and the
average causal effect on the defiers.
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Weak IV

CATE =
ITTY
ITTW

The finite performance of the IV estimator could be poor if

ITTW ≈ 0.

I Higher probability for ÎTTW to be close to 0 when the sample size is small.

I The distribution of ĈATE
iv

is not normal.

Such instrumental variables that are weakly correlated with the treatment are called
weak instrumental variables.
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Weak IV

For hypothesis testing,

H0 : CATE = 0 ⇐⇒ H ′
0 : ITTY = 0.

testing H ′
0 is simpler.

For confidence interval,

I Find values for b such that we cannot reject H0 : CATE = b using Wald test.

I Similar idea to the Anderson-Rubin confidence interval and the profiled likelihood
ratio confidence interval.
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Connection to Econometric Methods

Consider the following structural equation to model the treatment effect:

Y obs
i = α+ τ ·W obs

i + εi.

I Constant causal effect τ .

I Exclusion restriction assumption for all the units.

I εi is defined to be
Y obs
i − α− τ ·W obs

i .

I W obs
i is correlated with εi. That is W obs

i is endogenous.

I NOT a regression problem.
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I Zi is not correlated with εi.

A typical utilization of the instrumental variable is to estimate the causal effect τ by
the two-stage least squares (TSLS) method.
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Connection to Econometric Methods

Because Zi is uncorrelated with εi,

E(Y obs
i | Zi) = α+ τE(W obs

i | Zi)

Then
Y obs
i = α+ τ · E(W obs

i | Zi) + τW obs
i − τ · E(W obs

i | Zi) + εi︸ ︷︷ ︸
ηi

By the randomization assumption, E(W obs
i | Zi) and ηi are uncorrelated.

τ can be estiamted by the least squares method after we know the value of
E(W obs

i | Zi).
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Connection to Econometric Methods

The value of E(W obs
i | Zi) can be estimated by (the first stage):

E(W obs
i | Zi) = π0 + π1Zi,

In our case, π = 0 = 0 and π1 is the proportion of compliers.

In the second stage, we fit

Y obs
i = α+ τ · E(W obs

i | Zi) + ηi = α+ τ π̂1Zi + ηi.

τ̂ is the ratio of the two stages’ regression coefficients.
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IV + Bayesian Methods

I A multinomial logistic regression model for the compliance categories.

I Gaussian model for the potential outcomes.

I With a prior on all the parameters, samples for the missing potential outcomes
can be drawn from the posterior distribution:

f(Y mis,Wmis | Y obs,W obs,X,Z)

I Causal effects can be estimated by the imputed values.

Imbens & Rubin (1997). ”Bayesian Inference for Causal Effects in Randomized
Experiments with Noncompliance.” AoS.



Mendelian Randomization

Mendelian randomization with many (possibly invalid) instrumental variables.

Kang, Zhang, Cai,& Small (2016). ”Instrumental Variables Estimation With Some
Invalid Instruments and its Application to Mendelian Randomization.” JASA



ML + IV

Use ML to replace the regression model in TSLS.

Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, & Robins (2018).
”Double/debiased machine learning for treatment and structural parameters.” The
Econometrics Journal



Thank you for joining the workshop!

Contact:
Me chencheng.cai@wsu.edu
CISER ciser.info@wsu.edu


