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Confounder

A confounder is a variable that is associated with both the treatment and the
outcome.

If we do not control for the confounder, the estimated treatment effect may be biased,
because the confounder is unbalanced between the treatment and control groups.



Simpson’s Paradox

The batting averages of two baseball players in 1995 and 1996:

* batting average = hits / at-bats.

I Each year, player Jeter had a higher batting average than player Justice.

I The overall average of Justice is higher than Jeter.

I Time is a confounder (for batting average and for number of at-bats).
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Lord’s Paradox
I A large university is interested in investigating the effects on the students of the

diet provided in the university dining halls and any sex differences in these effects.
I Two groups: boys vs girls.
I Outcome: weight gain.



Lord’s Paradox

Statistician 1:

I Average weight gain for boys ∼ 0.

I Average weight gain for girls ∼ 0.

I Conclusion: no significant difference in
weight gain between boys and girls.



Lord’s Paradox

Statistician 2:

I Choose students with similar initial weights.

I The average weight gains are significantly
different for boys and girls.

I Conclusion:
boys have higher weight gains than girls.



Explanations

I Holland and Rubin (1983):
I Statistician 1 looks at the average descriptive statistics of the two groups.
I The two groups in nature have different distributions of initial weights (a

confounder).
I Statistician 2 conditions on the confounder and compares the weight gains.
I Statistician 2’s solution is aligned with the potential outcome framework.

I Pearl (2014):
Should consider the graphical causal model and do calculus.
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Super-Population Perspective and Unconfoundedness

A super-population perspective assumes that the observed data are a random
sample from a super-population. So are the covariates.

Unconfoundedness (under super-population perspective) is an assumption on the
joint distribution of (Yi(1), Yi(0),Wi, Xi):

(Yi(0) | Xi,Wi = 1)
D
= (Yi(0) | Xi,Wi = 0) for all i

and
(Yi(1) | Xi,Wi = 1)

D
= (Yi(1) | Xi,Wi = 0) for all i.

Or, we can write it as
Wi ⊥⊥ (Yi(0), Yi(1)) | Xi.
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Unconfoundedness

I Unconfoundedness implies the connection between the observed potential
outcomes and the missing potential outcomes:(

Y mis
i | Xi,Wi = w

) D
=
(
Y obs
i | Xi,Wi = 1− w

)
for all i.

I The unconfoundedness assumption is not testable.

I The common practice is to include all the pre-treatment covariates in Xi.
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Balancing Score

It is ususally impossible to find many pair of units from each of the treated and control
groups that have the same values of Xi.

Instead, we can find a function of Xi, denoted by b(Xi), called the balancing score,
such that

Wi ⊥⊥ Xi | b(Xi)

Choices of b(Xi) include:

I Xi itself.

I Propensity score: e(Xi).

I Expert-selected subsets/transformations of Xi.
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Balancing Score

Unconfoundedness Given a Balancing Score:

Wi ⊥⊥ (Yi(0), Yi(1)) | b(Xi).

Coarseness of Balancing Scores:
The propensity score is the coarsest balancing score. That is the propensity score is a
function of any other balancing score.
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Causal Methods using Balancing Scores

I Model-based Imputation: Impute the missing potential outcomes using the
covariates.

I Matching: Match treated and control units with similar values of the balancing
score.

I Stratification: Stratify the sample based on the values of the balancing score.

I Weighting: Weight the treated and control units.



Regression-based Method

Suppose we consider a linear regression model for the potential outcomes:(
Yi(0)

Yi(1)

)
=

(
Xiβ0
Xiβ1

)
+

(
εi0
εi1

)
, with

(
εi0
εi1

)
∼ N

((
0

0

)
,

[
σ20 σ0σ1
σ0σ1 σ21

])

The coefficients can be estimated by OLS:

β̂0 = arg min
β

∑
i:Wi=0

(Y obs
i −Xiβ)2, β̂1 = arg min

β

∑
i:Wi=1

(Y obs
i −Xiβ)2

The average treatment effect can be estimated by

τ̂ ols =
1

N

N∑
i=1

[
Wi(Y

obs
i −Xiβ̂0) + (1−Wi)(Xiβ̂1 − Y obs

i )
]
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Regression-based Method

β̂0 is fitted using {Xi : Wi = 0}, but β̂0 is used in prediction for {Xi : Wi = 1}.

I If Xi differs a lot in domains for the two groups, the prediction is extrapolation.

I For completely randomized experiments, the expected difference in Xi is 0 —- not
a bit issue of extrapolation.

I For other assigning mechanisms, especially for observational studies, extrapolation
is a big issue —- the performances depends strongly on the model specification.

I Solution: the observations should be weighted in OLS such that the covariates
are balanced in distribution between the two groups.
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Weighting using Propesnity Score

The inverse propensity score weighting (IPW) is a popular method to balance the
covariates.

Two properties of the propensity score in weighting:

I Unbiasedness:

E
(
WiY

obs
i

e(Xi)

)
= E(Yi(1)), E

(
(1−Wi)Y

obs
i

1− e(Xi)

)
= E(Yi(0)),

where the expectation is taken over the super-population distribution.

I Balanced Covariates:

p(Xi |Wi = 1)

p(Xi |Wi = 0)
∝ e(Xi)

1− e(Xi)
=⇒ p(Xi |Wi = 1)

e(Xi)
∝ p(Xi |Wi = 0)

1− e(Xi)

The density of IPW-ed Xi is the same for the two groups.
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Weighting using Propesnity Score

The IPW estimator of the average treatment effect is

τ̂ ipw =
1

N

N∑
i=1

(
WiY

obs
i

e(Xi)
− (1−Wi)Y

obs
i

1− e(Xi)

)

I Advantage: always unbiased under unconfoundedness.

I Disadvantage: the variance of the estimator can be large — due to extreme
propensity scores.

I It is also called the Horvitz-Thompson estimator in survey sampling.

I Caution: e(Xi) still remains to be estimated.
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Weighting using Propesnity Score

A few ways to solve extreme propensity scores.

I Trimming: exclude the units with extreme propensity scores. Drawback: lose
information.

I Truncation: saturate the propensity scores at a certain level. Drawback: added
bias.

I Hájek Estimator: reduces variance by normalizing weights.

τ̂hajek =

∑
iWiY

obs
i /e(Xi)∑

iWi/e(Xi)
−
∑

i(1−Wi)Y
obs
i /(1− e(Xi))∑

i(1−Wi)/(1− e(Xi))

Drawback: added bias for finite sample.



Subclassification on Propensity Scores

We divide the domain of the propensity score into J strata:

b0 = 0 < b1 < b2 < · · · < bJ−1 < bJ = 1.

For each stratum j, the difference-in-means is

τ̂dif (j) =
1

Nt(j)

∑
i:bj−1<e(Xi)<bj

WiY
obs
i − 1

Nc(j)

∑
i:bj−1<e(Xi)<bj

(1−Wi)Y
obs
i

The overall estimator is

τ̂ strat =

J∑
j=1

N(j)

N
τ̂dif (j)

I Advantage: the variance is reduced by stratification.

I Disadvantage: potential bias due to the discretization of the propensity score.
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Subclassification on Propensity Scores

For each stratum j, the bias comes from

I We use Ȳ obs
t (j) to estimate E(Yi(1) |Wi = 0).

I We use Ȳ obs
c (j) to estimate E(Yi(0) |Wi = 1).

They are not equal because the covariates are not perfectly balanced in each stratum.

Bias Correction:

I We fit a parametric model for the potential outcomes:

Yi(Wi) = f(Xi,Wi; θ) + εi.

The model can be as simple as linear.

I We estimate the difference between E(Yi(1) |Wi = 0) and E(Yi(1) |Wi = 0)
using the fitted model and the discrepancy in the covariates.

I The bias is substrated from the stratified estimator.
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Matching Method

Consider an experiment with more treated than control units. The matching method
is to find for each treated unit a similar control unit.

I closeness:
I Exact Matching: the treated and control units have the same values of the

covariates. Often for categorical variables.
I Metric Matching: the treated and control units are close in the covariate space.

Often for continuous variables. E.g. using Mahalanobis distance.
I Propensity Score Matching: the treated and control units have similar propensity

scores.

d(i, j) =

[
log

e(Xi)

1− e(Xi)
− log

e(Xj)

1− e(Xj)

]2
I Replacement:

I With Replacement: the control unit can be matched to multiple treated units.
I Without Replacement: the control unit can be matched to only one treated unit.
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Matching Method

Algorithms:

I Greedy Matching 1: for each treated unit, find the available closest control unit.
Repeat until all treated units are matched.

I Greedy Matching 2: within all avaialble pairs, find the closest pair. Repeat until
all treated units are matched.

I Optimal Matching: find the best matching pairs that minimize the total
distance. (NP-hard, optimal transportations)

Common Practices:

I Poor matches are often excluded.

I Could also use one-to-many matching using a caliper.

I Balance of the covariates should be checked after matching.

I Cautious: distribution shift after matching!!!
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Matching Method
The estimator is

τ̂match =
1

Nt

∑
i:Wi=1

(Y obs
i − Y obs

m(i)),

where m(i) is the matched control unit for treated unit i.

Caution: because the matching is per treated unit, the distribution of covariates for
treated can be different from that of the population.
We are estimating the average treatment effect for the treated units, not for the
population.

I Finite Sample Version:

τfs,t =
1

Nt

∑
i:Wi=1

(Yi(1)− Yi(0))

I Super-Population Version:

τsp,t = E(Yi(1)− Yi(0) |Wi = 1)
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Matching Method

If the matching is exact, the estimator is unbiased.

E(Y obs
i − Y obs

m(i) | Xi) = E(Yi(1)− Yi(0) | Xi).

The variance of the estimator τ̂matcht can be estimated from the sample variance of the
differences.

If the matching is inexact, the estimator is biased.

I The bias is due to the difference in the covariates/propensity scores between the
treated and control units.

I The bias can be corrected by the regression adjustment.

One-to-many matching can be used to reduce bias and variance of the estimator.

I Bias is reduced because multiple control units are matched to a treated unit —
smaller discrepancy in the averaged covariates.

I Variance is reduced because the sample size is increased. But the improvement in
variance is limited.
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Matching Method

To estimate the average treatment effect for the control τsp,c, we can match all
controlled units instead.

To estimate the average treatment effect for the population τsp, we need to estimate
both τsp,t and τsp,c and combine them.

τsp =
Nt

N
τsp,t +

Nc

N
τsp,c
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Other Technical Issues

I All the propensity scores need to be estimated in the first place. The most
common model is a logistic regression model:

log
P (Wi = 1 | Xi)

1− P (Wi = 1 | Xi)
= Xiβ.

I The model specification is crucial. The model should be flexible enough to
capture the relationship between the covariates and the treatment assignment.

I Besides the caual effect estimators, the standard errors should also be estimated.
We skip the details here.

I The hypothesis testing for the average treatment effect usually follows a Z-test
(when the sample size is large).



Example

We take one example from Imbens and Rubins’ book to demonstrate the techniques in
balancing the covariates.

I Treatment: prenatal exposure to barbiturates

I Covariates: quite a few regarding the born child and the mother.

I Outcome: cognitive development measured many years later

I 745 treated and 7198 control.

I It is an observational study.



Example



Example

Step 1: Estimate the propensity score.

I The propensity score is estimated by a logistic regression model.

I Due to the large number of parameters and possible interactions, the logistic
regression model selects covariates by a sequential manner.
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Example

Step 2: Stratification.

I The stratification is based on the propensity score.
I An adaptive procedure is conducted:

I Starting from one stratum, the balance of the covariates is checked.
I If the balance is not achieved, the stratum is split into two new stratum of equal size.
I Repeat until all strata are balanced.
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Step 3: Matching Method.

I The matching is based on the Mahalanobis distance or the propensity scores.

I The performance is check by the overlapping scores of the covariates.
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Summary

I Model Imputation Methods:
I Advantages: easy to implement, flexible.
I Disadvantages: model specification is crucial, extrapolation is a big issue.

I Weighting Methods:
I Advantages: unbiased, balance the covariates.
I Disadvantages: variance can be large, extreme propensity scores.

I Stratification Methods:
I Advantages: reduce variance, balance the covariates.
I Disadvantages: bias due to discretization.

I Matching Methods:
I Advantages: balance the covariates, reduce variance.
I Disadvantages: bias due to inexact matching, distribution shift.



Beyond the Single Causes

The confounder control so far is based on a single treatment (cause). In reality, there
could be many (cause, consequence) pairs.

The Book of Why by Judea Pearl
Causal inference in statistics: An overview by Judea Pearl
Causal Inference in Statistics: A Primer by Judea Pearl
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Causal Diagram

A causal diagram is a directed acyclic graph (DAG) that represents the causal
relationships between the variables.

I A→ B means A affacts B directly.

X Y

Z

I It is very easy to identify the confounders in the causal diagram.

I For the diagram above, Z is a confounder for the effect of X on Y .
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Do Operator

The operator do(X = x) is used to represent the intervention of setting X to x.

X Y

Z

I Conventional probability:

P (y, z | X = x) =
P (x, y, z)

P (x)
=
P (y | x, z)P (x | z)P (z)∫

P (x | z)P (z)dz

I Do operator: (x is no longer random after intervention)

P (y, z | do(x)) = P (y | x, z)P (z)



Do Operator

For any DAG causal diagram with independent noise terms, the conditional distribution
conditioned on the do operator is

P (v1, . . . , vk | do(x0)) =
∏

i:vi 6=X
P (vi | pai)|x=x0 ,

where pai is the parent set of vi in the DAG.



Do Operator
Any unmeasured confounders should be integrated out.

X Y

Z

We already know
P (y, z | do(x)) = P (y | x, z)P (z)

Therefore,
P (y | do(x)) =

∑
z

P (y | x, z)P (z)

I As long as we can estimate P (y | x, z) and P (z) from the data, we can estimate
P (y | do(x)).

I The causal effect of X on Y is

τ = E(Y | do(x = 1))− E(Y | do(x = 0))



Do Operator
Any unmeasured confounders should be integrated out.

X Y

Z

We already know
P (y, z | do(x)) = P (y | x, z)P (z)

Therefore,
P (y | do(x)) =

∑
z

P (y | x, z)P (z)

I As long as we can estimate P (y | x, z) and P (z) from the data, we can estimate
P (y | do(x)).

I The causal effect of X on Y is

τ = E(Y | do(x = 1))− E(Y | do(x = 0))



Back-door Adjustment
In practice, if we want to estimate the causal effect of X on Y , there could be many
confounders. We need to determine all the necessary confounders and adjust for them.

Confounders for the effect of X on Y : Z1, Z2, Z3.

Such a set of confounders is called a admissible set, such that as long as the set is
adjusted for, the causal effect is identified.
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Back-door Adjustment

Back-door Criterion:
A set S is admissible for adjustment if two conditions hold:

1. No element of S is a descendant of X.

2. S blocks all back-door paths between X and Y .

Back-door Adjustment Formula:
If S is an admissible set, then

P (Y = y | do(X = x)) =
∑
s

P (Y = y | X = x, S = s)P (S = s)

where the summation is over all possible values of S.
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Back-door Adjustment

I {Z1, Z3} is an admissible set.
I {Z3} is an admissible set.
I {Z1, Z2} is not an admissible set.

If we adjust for Z3, the back-door adjustment formula is

P (Y = y | do(X = x)) =
∑
z3

P (Y = y | X = x, Z3 = z3)P (Z3 = z3)

In practice, we only need to estimate the conditional distribution P (Y | X,Z3) and the
marginal distribution P (Z3).
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Front-door Adjustment

Suppose we have the following causal diagram. But U is unobserved.

X Y

U (unobserved)

Z

I The back-door adjustment does not work because U is unobserved.

I However, the path X → U → Y is blocked by U such that U works as a proxy for
X.

I The effect of X on Z can be estimated.

I The effect of Z on Y can be estimated.

I The effect of X on Y can be estimated by combining the two effects.
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Front-door Adjustment

Front-door Criterion:
A set S satisfies the front-door criterion if three conditions hold:

1. S intercepts all directed paths from X to Y .

2. There is no backdoor path from X to S.

3. All backdoor paths from S to Y are blocked by X.

Front-door Adjustment Formula:
If S is an admissible set, then

P (Y = y | do(X = x)) =
∑
s

∑
x′

P (Y = y | X = x′, S = s)P (X = x′)P (S = s | X = x).
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Front-door Adjustment

X Y

U (unobserved)

Z

The set {Z} satisfies the front-door criterion. The front-door adjustment formula is

P (Y = y | do(X = x)) =
∑
z

∑
x′

P (Y = y | X = x′, Z = z)P (X = x′)P (Z = z | X = x).



Thank you for joining the workshop!

Contact:
Me chencheng.cai@wsu.edu
CISER ciser.info@wsu.edu


