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Motivation

Individualized models are in high demand:
▶ personalized medicine
▶ the market of one
▶ targeted advertisement
▶ small data models

The dilemma:
▶ Large data model provides accurate and efficient estimations for the whole population.

⋆ targeting the common law of the population
⋆ inadequate for under-represented sub-populations

▶ A Small data model trained on a fully personalized dataset provides a completely
individualized model.

⋆ Usually vulnerable due to limited data size.
⋆ Privacy issue.
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Individual Model

D1 Model 1 Estimation 1

D2 Model 2 Estimation 2

D3 Model 3 Estimation 3

D4 Model 4 Estimation 4

Di , i = 1, 2, 3, 4: datasets for four individuals.

Model i for i = 1, 2, 3, 4: same model family with different parameters.

Estimation i for i = 1, 2, 3, 4: estimated parameters.
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Population Model

Model

D1 Estimation 1

D2 Estimation 2

D3 Estimation 3

D4 Estimation 4

Fit one large model with all datasets.

Estimation i, i = 1, 2, 3, 4, are the same for all individuals.
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ChatGPT 3.5 without internet access

Me: ”Let’s discuss in the domain of statistics.”

ChatGPT: ”Absolutely, statistics is a fascinating field! ...”

Me: ”What is Bayesian inference?”

ChatGPT: ”Bayesian inference is a statistical approach for updating beliefs or making
predictions about unknown parameters or events based on evidence or data. It’s named
after the Reverend Thomas Bayes, an 18th-century mathematician, and is rooted in
Bayesian probability theory....”

ChatGPT knowns Bayesian inference — a widely recognized methodology.
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ChatGPT 3.5 without internet access

Me: ”What is fusion learning?”

ChatGPT: ”Fusion learning, also known as ensemble learning, is a machine learning
technique where multiple models (or learners) are combined to improve the overall
performance of the system. The idea behind fusion learning is that by combining the
predictions of multiple models, we can often achieve better accuracy, robustness, and
generalization compared to using a single model alone.
There are several approaches to fusion learning, including: ... ”

ChatGPT recognizes fusion learning as ensemble learning,
a very close but different concept.
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ChatGPT 3.5 without internet access

Me: ”What is individualized group learning?”

ChatGPT: ””Individualized group learning” sounds like a combination of two concepts:
individualized learning and group learning.
...
Combining these two concepts, ”individualized group learning” could refer to a learning
approach that integrates elements of both individualized learning and group learning.”

ChatGPT does not know individualized group learning at all.

Individualized Group Learning is an under-represented topic on the internet.
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Gemini with internet access

Me: ”What is individualized group learning?”

Gemini: ”The term ”individualized group learning” can have two different meanings:
1. In education: It refers to ...
2. In statistics and machine learning: It’s a more technical concept known as ”iGroup”.
This approach focuses on creating a customized group for each individual based on their
data. ...”

Gemini correctly recognizes individualized group learning.

Use a pre-trained large language model (population model) for linguistic correctness.

Use Google search results (individual model) for a specified answer to the topic.
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Individualized Group Learning (iGroup)

D1 Model 1 Estimation 1

D2 Model 2 Estimation 2

D3 Model 3 Estimation 3

D4 Model 4 Estimation 4

Model i, i = 1, 2, 3, 4, are fusion models that use all the data but target individual i .

Each model uses the datasets with different weights (illustrated by the line width).

Model i is fitted in a clique of individual i:
▶ clique: similar/relevant individuals
▶ clique size controlled by the weights.
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Problem Setup

Individuals k = 0, 1, . . . ,K . Individual 0 is the target.

x-model: π(·): unknown population distribution. p(·; θ) known distribution family.

z-model: g() unknown continuous function. q(·; ·) unknown distribution family.

Observed: {(xk , zk)}Kk=0

Goal: estimate θ0.
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Aggregated Estimation

θ̂k : individual point estimator.

Mk(θ) := Mk(θ, xk): individual objective function

θ̂k = argmin
θ

Mk(θ)

We consider the following two pooled estimators for θ0.

(aggregating estimators) θ̂
(c)
0 =

∑K
k=0 θ̂kw(k; 0)∑K
k=0 w(k ; 0)

(aggregating objective functions) θ̃
(c)
0 = argmin

θ

K∑
k=0

Mk(θ, xk)w(k; 0)

where w(k ; 0) is some weight function measure the similarity between individual k and 0.
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Aggregated Estimation

(aggregating estimators) θ̂
(c)
0 =

∑K
k=0 θ̂kw(k ; 0)∑K
k=0 w(k ; 0)

(aggregating objective functions) θ̃
(c)
0 = argmin

θ

K∑
k=0

Mk(θ, xk)w(k; 0)

Example:
▶ θ̂k is the least squares estimator and Mk(θ, xk) is the sum of squared error.
▶ θ̂k is the maximum likelihood estimator and Mk(θ, xk) is the negative log-likelihood function.

When w(k ; 0) ≡ 1, the combined estimators corresponds to a population model.

When w(k ; 0) = 1{k=0}, the combined estimators corresponds to the individual model.

The design of the weight function w(k , 0) is crucial for the combined estimators.
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Weight Function

We would like to construct the weight function as follows:

w(k ; 0) = w1(zk , z0)w2(θ̂k , θ̂0 | z0, zk)

w1(zk , z0) measures the similarity between zk and z0. A common choice is

w1(zk , z0) = K1

(
∥zk − z0∥

b1

)
for some kernel function K1 and bandwidth b1.

w2(θ̂k , θ̂0 | z0, zk) measures the similarity between individual estimators. The choice for
w2(θ̂k , θ̂0 | z0, zk) is not trivial!
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Weight Function

An intuitive but incorrect choice for w2(θ̂k , θ̂0 | z0, zk) is

w2(θ̂k , θ̂0 | z0, zk) = K2

(
∥θ̂k − θ̂0∥

b2

)

for some kernel function K2 and bandwidth b2.

Example: when K → ∞ and b2 → 0, θ̂
(c)
0 → θ̂0.
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Weight Function

We propose to use a novel weight function:

w2(θ̂k , θ̂0 | z0, zk) =
∫
p(θ̂k | θ)p(θ̂0 | θ)p(θ | z0)dθ

p(θ̂k | zk)p(θ̂0 | z0)

Interpretation 1:∫
p(θ̂k | θ)p(θ̂0 | θ)p(θ | z0)dθ measures the joint density for (θ̂k , θ̂0) if they were

generated independently from identical individuals.

Interpretation 2:∫
p(θ̂k | θ)p(θ̂0 | θ)p(θ | z0)dθ

p(θ̂0 | z0)
=

∫
p(θ̂k | θ)p(θ̂ | θ̂0, z0)dθ

It gives the probability of θ̂k in the posterior predictive distribution of individual 0. Or,
the probability of getting θ̂k if the individual 0 generated a new and independent
copy of θ̂0.
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Computation of the Weight Function

w2(θ̂k , θ̂0 | z0, zk) =
∫
p(θ̂k | θ)p(θ̂0 | θ)p(θ | z0)dθ

p(θ̂k | zk)p(θ̂0 | z0)

The two conditional probabilities can be estimated from the joint dataset {(θ̂k , zk)}Kk=0.

p̂(θ̂k | zk) =
∑K

j=0K1(∥zk − zj∥/b1)K2(∥θ̂k − θ̂j∥/b2)∑K
j=0K1(∥zk − zj∥/b1)

If we have independent copies θ̂
(1)
k and θ̂

(2)
k from each individual k . The numerator is:∑K

j=0K1(∥z0 − zj∥/b1)K2(∥θ̂(1)j − θ̂0∥/b2)K3(∥θ̂(2)j − θ̂k∥/b3)∑K
j=0K1(∥z0 − zj∥/b1)
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Computation of the Weight Function

We need independent copies of xk from each individual k .

Individual k

x (1)
k

x (2)
k

θ̂
(1)
k

θ̂
(2)
k

(θ̂
(1)
k , θ̂

(2)
k , zk)

However, this is impossible because we only observe one copy of xk for each k .

We approximate the procedure by letting x (1)
k and x (2)

k be two bootstrap samples of xk .

Bootstrap requires a minimum sample size ∼ 10 and θ̂
(1)
k and θ̂

(2)
k are weakly dependent.
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Individualized Group Learning (iGroup) Workflow

1. Observe (xk , zk) for individual k, k = 0, 1, . . . ,K , where individual 0 is the target.

2. For each xk , obtain estimator θ̂k and obtain θ̂
(1)
k and θ̂

(2)
k from two bootstrap samples.

3. Calculate the weight function

w(k; 0) = K1

(
∥zk − z0∥

b1

) ∫
p(θ̂k | θ)p(θ̂0 | θ)p(θ | z0)dθ

p(θ̂k | zk)p(θ̂0 | z0)

where the second part is estimated nonparametrically from {(θ̂(1)k , θ̂
(2)
k , zk)}Kk=0.

4. Construct the combined estimator for θ0 in either of the following two ways.

θ̂
(c)
0 =

∑K
k=0 θ̂kw(k; 0)∑K
k=0 w(k ; 0)

or θ̃
(c)
0 = argmin

θ

K∑
k=0

Mk(θ, xk)w(k ; 0)

Note that the iGroup estimator can be constructed based solely on xk or zk .
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Assumptions

Assumption (Dense Assumption)

There exists a constant d ≥ 1 such that for all i = 1, ...,K , |C0(ϵ)| ≍ Kϵd in probability when
K → ∞, ϵ → 0, where C0(ϵ) = {k : ∥θk − θ0∥ < ϵ, k = 0, . . . ,K}.

Assumption (Smooth Parameter)

There exists a positive constant κ such that, for all θ, θ′ ∈ Ωθ,

sup
x

|p(x | θ)− p(x | θ′)| ≤ κ∥θ − θ′∥.

Assumption (Kernel Assumption)

The kernel function K used in w1 satisfies

K(·) ≥ 0,

∫
K(u)du < ∞, limu→∞ uK(u) → 0.

In addition, when K → ∞, b → 0 and bdK → ∞.
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Target Estimator

Let δ0 be any estimator for θ0 using the data {(xk , zk)}Kk=0. Both θ̂
(c)
0 and θ̃

(c)
0 are such

estimators.

Proposition (Risk Decomposition under Squared Loss)

Suppose θ0 has a prior distribution π(·). Then we have

E[(δ0 − θ0)
2] = E[(δ0 − Eπ[θ | z0, x0])2] + E[(Eπ[θ | z0, x0]− θ0)

2]

The minimum mean squared error is obtained when δ0 = Eπ[θ | z0, x0], the posterior mean.
We call

Θ0(x0, z0; ℓ2) := Eπ[θ | z0, x0]

the target estimator, where π(·) takes the population distribution of θ.
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Target Estimator

For general loss function L(θ̂, θ), we define the target estimator by

Θ0(x0, z0; L) := argmin
δ

Eπ[L(δ, θ) | x0, z0]

And a similar risk decomposition:

Proposition (Risk Decomposition for General Loss)

If L(θ̂, θ) is second-order partially differentiable with respect to θ̂, then

E[L(δ0, θ0)] =
1

2
E[L′′(Θ0, θ0)(δ0 −Θ0)

2] + E[L(Θ0, θ0)] + o((δ0 −Θ0)
2)

where Θ0 = Θ0(x0, z0; L) is the target estimator.
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Target Estimator

The target estimators

Θ0(x0, z0; ℓ2) = Eπ[θ | z0, x0]
Θ0(x0, z0; L) = argmin

δ
Eπ[L(δ, θ) | x0, z0]

are the best estimators we can construct based on the observed data.

They are Bayes estimators under the empirical prior π(), which is unknown.

Instead of converging to θ0, we hope our iGroup estimators converge to target estimators

θ̂
(c)
0 → Θ0 and θ̃

(c)
0 → Θ0

under certain loss L(·, ·).
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Target Estimator

Example: imagine a model with

P[xk = θk + 1] = 1/2

P[xk = θk − 1] = 1/2

θi = 5 xi = 4 θ̂
(c)
i

θj = 3 xj = 4 θ̂
(c)
j

Since we only observe xi = xj = 4, therefore, out estimators θ̂
(c)
i should be the same θ̂

(c)
j .

It is impossible for θ̂
(c)
i = θ̂

(c)
j to converge to both θ = 5 and θ = 3.
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Convergence of iGroup Estimators

First, we have the convergence of the following iGroup estimator:

θ̂
(c)
0 =

∑K
k=0 θ̂kw(k ; 0)∑K
k=0 w(k; 0)

Theorem

If θ̂k is a sufficient and unbiased estimator for θk for k = 0, . . . ,K . Under all previous
assumptions, when K → ∞, we have

θ̂
(c)
0 −→ Θ0(x0, z0; ℓ2) in probability.

Sufficient means θ̂k is a sufficient statistic for θk .
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Convergence of iGroup Estimators

Next, we have the convergence of the following iGroup estimator:

θ̃
(c)
0 = argmin

θ

K∑
k=0

Mk(θ, xk)w(k; 0)

Theorem

If for any given θ̂, the objective function M(θ, θ̂) as a function of θ is convex and second-order
differentiable, and if loss L satisfies∫

M(θ, θ̂)p(θ̂ | θ′)dθ = L(θ, θ′) + C (θ′),

then, under all previous assumptions, when K → ∞, we have

θ̃
(c)
0 −→ Θ0(x0, z0; L) in probability.
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Convergence of iGroup Estimators

The requirement ∫
M(θ, θ̂)p(θ̂ | θ′)dθ = L(θ, θ′) + C (θ′)

links the objective function to a loss function.

When M(θ, θ̂) = − log p(θ̂ | θ is the negative log-likelihood, L(θ, θ′) corresponds to the
Kullback-Leibler divergence between p(θ̂ | θ) and p(θ̂ | θ′).

In summary:

The iGroup estimator, by aggregating individual estimators, converges to the Bayes
estimator under squared loss.

The iGroup estimator, by aggregating log-likelihood functions, converges to the Bayes
estimator under K-L divergence loss / cross-entropy loss.
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Further Results on Risk Decomposition

When θ̂ is not available for all the individuals, we construct our estimator on zk and
aggregate objective functions targeting Θ0(z0; L)
When zk is not available for all the individuals, we construct our estimator solely on θ̂k ’s
targeting Θ0(x0; L)
For using only x or z , all previous theoretical results hold.

But using different sets of information (θ̂, z or both) can result in different risks.
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Further Results on Risk Decomposition

Proposition (Full Risk Decomposition)

Let θ̂
(c)
0 be any iGroup estimator by aggregating individual estimators, and let Θ0 be its

targeting estimator. Then,

R(θ̂
(c)
0 ) = Rnp(θ̂

(c)
0 ) + Rtarget(Θ0),

where R(θ̂
(c)
0 ) = E[(θ̂(c)0 − θ0)

2] is the overall risk, Rnp(θ̂
(c)
0 ) = E[(θ̂(c)0 −Θ0)

2] is risk premium
from nonparametric estimation, and Rtarget(Θ0) is the risk of the target estimator.
Furthermore, if we use partial information, then

Rtarget(Θ0) = Rinf (Θ0) + R0,

where Rinf (Θ0) = E[(Θ0 −Θ0(x0, z0; ℓ2))2] is the risk premium from information loss, and R0

is the risk of Θ0(x0, z0; ℓ2).
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Further Results on Risk Decomposition

Risk decomposition for different iGroup models.
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Short Time Series

We simulate K = 200 short AR(1) time series.

The AR(1) coefficients θ1, · · · , θ200 follow:

θk + 1

2
∼ Beta(4, 4), k = 1, . . . , 200

Each time series is generated by

xk,0 ∼ N
(
0,

σ2

1− θ2k

)
xk,t = θkxk,t−1 + ϵk,t , k = 1, . . . , 200, t = 1, . . . , 10,

where ϵk,t ∼ N (0, σ2) with σ = 3.

No exogenous variable zk is involved!
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Short Time Series — Estimators

Individual: estimate each θ̂k from its own data (11 observations).

iGroup1: aggregating log (conditional) likelihood function with weights estimated from
the bootstrap samples.

iGroup2: aggregating individual estimators with weights estimated from the bootstrap
samples.

Oracle: directly compute the posterior mean using the Beta prior.

The whole simulation (including data generation) is repeated 100 times.
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Short Time Series — Comparison
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VaR Analysis based on Fama-French Factors

α% Value-at-Risk (VaR) of a stock is the α% lower quantile of its upcoming daily return.

rt,k : daily return of stock k on day t.

Exogeneous variables: Fama-French three factors:

rt,k = αt,k + rf + b0,t,k(MKTt − rf ) + b1,t,kSMBt + b2,t,kHMLt + ϵt,k

The coefficients b0,t,k , b1,t,k and b2,t,k are used as exogenous variables.

We assume the dynamics of stock price change slowly such that in a look-back window of
length S , the coefficients are constant.
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VaR Analysis based on Fama-French Factors

Individual Estimator:

V̂aRind(t, k) = Qα

(
S−1⋃
s=0

{rt−s,k}

)
where Qα is the α-quantile function.

Market Estimator:

V̂aRmkt(t, k) = Qα

(
K⋃

k=1

S−1⋃
s=0

{rt−s,k}

)
Quantile Regression: We fit a linear model of empirical quantile against the F-F
coefficients. Use one-day prediction as the VaR.
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VaR Analysis based on Fama-French Factors

iGroup Estimator:

V̂aRigroup(t, k) = Q(w)
α

(
K⋃
l=1

S−1⋃
s=0

(rt−s,l ,w(l ; k))

)
,

where Q
(w)
α is the weighted empirical quantile.

▶ The weight function w(k ; l) can be built based on z (F-F coefficients) or V̂aRind or both.
▶ The iGroup estimator is equivalent to aggregating objective functions.

V̂aRigroup(t, k) = argmin
θ

K∑
l=1

Mk(θ; t)w(l ; k)

with

Mk(θ; t) =
S−1∑
s=0

|rt−s,k − θ|(α1{rt−s,k>θ} + (1− α)1{rt−s,k≤θ})
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VaR Analysis based on Fama-French Factors

Dataset: 491 stocks from S&P 500. Predict returns for 250 trading days in 2016.

Look-back period: S = 100 days.

We measure the performance of the VaR estimators by

RMSE =

 1

491

491∑
k=1

(
1

250

250∑
t=1

1{rt,k≤V̂aR(t,k)} − 0.01

)2
1/2
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Comparison to Other Methods

Nonparametric Regression / K-Nearest Neighbor: we have special design for
similarity between θ̂k and we allow aggregating objective functions.

Empirical Bayes: we do not directly estimate prior π(·).
Hierarchical Bayes: we do not assume a parametric form for π(·)
Mixed-Effects Model: we do not assume a Gaussian prior for θ.

Individualized Fusion Method: We consider K → ∞ but len(xk) fixed.
Transformer / Self-attention:

▶ Similarity: θ̂ weighted by a similarity measure between θ̂’s.
▶ Difference: we aim for a Bayes estimator instead of feature extraction.

Chencheng Cai (Washington State University) Individualized Group Learning January 30, 2025 42 / 44



Conclusion

We proposed a framework of individualized group learning with a novel weight function.

The iGroup estimators converge to the best estimator one can obtain – Bayes estimator.

The flexibility in combining individual estimators or objective functions broadens the
application of the proposed method.

Both simulation and real data examples show the superior performance of the iGroup.
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Thank you for listening!
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