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Notations

▶ t = 0, 1, . . . , T : Time index

▶ Xt, Yt: random variable at time t

▶ xt, yt: value of the random variables

▶ Xt:s: (Xt, Xt+1, . . . , Xs)

▶ Xt: X0:t

▶ p(·): the general probability notation



State-Space Model (SSM)
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▶ Latent Variables: X0, X1, . . . , XT .

p(X0 = x0) = f0(x0),

p(Xt = xt |Xt−1 = xt−1) = ft(x0, . . . , xt−1, xt)

≡ ft(xt | xt−1)

▶ Independent Observations: Y1, Y2, . . . , YT .

p(Yt = yt | Xt = xt) = gt(xt, yt) ≡ gt(yt | xt)



State-Space Model

▶ The state-space model is a full probability model with the joint density

p(xT ,yT ) = f0(x0)

T∏
t=1

ft(xt | xt−1)gt(yt | xt)

▶ Likelihood estimation problem:

Compute p(yT ; θ)

▶ Most likely path (MLP) problem:

argmax
xT

p(xT | yT )

▶ Sampling problem:
draw xT ∼ p(xT | yT )



Sampling from a State-Space Model

▶ Sequential Monte Carlo (SMC) is a set of methods of sampling from the state-space
models.

▶ The key step is based on the following recursive importance sampling step:

▶ if {(x(i)
t , w

(i)
t )}Ni=1 is a properly weighted sample for

p(Xt | yt) ∝ f0(X0)

t∏
s=1

fs(Xs |Xs−1)gs(ys | Xs)

▶ draw x
(i)
t+1 from the proposal distribution qt+1(Xt+1 | xt)

▶ let

x
(i)
t+1 = (x

(i)
t , x

(i)
t+1)

w
(i)
t+1 ∝ w

(i)
t

ft+1(x
(i)
t+1 | x

(i)
t )gt+1(yt+1 | x(i)

t )

qt+1(x
(i)
t+1 | x

(i)
t )

▶ then {(x(i)
t+1, w

(i)
t+1)}Ni=1 is a properly weighted sample for

p(Xt+1 | yt+1) ∝ f0(X0)

t+1∏
s=1

fs(Xs |Xs−1)gs(ys | Xs)



Sequential Importance Sampling (SIS)

1. Draw x
(i)
0 i.i.d. from q0(X0).

2. w
(i)
0 ← f0(x

(i)
0 )/q0(x

(i)
0 ).

3. For t = 1, . . . , T ,

3.1 Draw x
(i)
t from qt(Xt | x(i)

t−1).
3.2 Update weight

w
(i)
t ← w

(i)
t−1

ft(x
(i)
t | x

(i)
t−1)gt(yt | x

(i)
t )

qt(x
(i)
t | x

(i)
t−1)

.

4. Return {(x(i)
T , w

(i)
T )}Ni=1.



Sequential Importance Sampling (SIS)

The choice of qt is arbitrary.

▶ bootstrap particle filter:

qt(Xt |Xt−1) = ft(Xt |Xt−1)

▶ independent particle filter:

qt(Xt |Xt−1) ∝ gt(yt | Xt)

▶ conditional optimal:

qt(Xt |Xt−1) ∝ ft(Xt |Xt−1)gt(yt | Xt)

Major drawback: weight collapse.

▶ A small number of samples posses the majority of the weights.

▶ Small ESS. Large variance.

▶ Solution: resampling.



Resampling

1. At time t, assign a priority score β
(i)
t to the sample x

(i)
t .

2. Draw j1, . . . , jN i.i.d. from {1, 2, . . . , N} such that

P [jk = i] = β
(i)
t .

3. relabel the samples

x
(i)
t ← x

(ji)
t .

4. update weights

w
(i)
t ←

w
(ji)
t

β
(ji)
t

.



Resampling

▶ The choice of priority score βt is arbitrary.
▶ Conventional choice: βt ∝ wt

▶ Auxiliary particle filter: βt ∝ p(yt+1 |Xt)
▶ Delayed particle filter: βt ∝ p(yt+∆ |Xt)

▶ Resampling algorithms:
▶ Multinomial, residual, stratified, etc..

▶ Resampling schedule:
▶ Fixed schedule: Do resampling at t = δ, 2δ, 3δ, . . . .
▶ Adaptive schedule: Do resampling when ESS < 0.3N .

Effective Sample Size(ESS) =

(∑N
i=1 w

(i)
)2

∑N
i=1 (w

(i))
2

▶ Drawback: degeneracy.



Sequential Importance Sampling with Resampling

1. Draw x
(i)
0 i.i.d. from q0(X0).

2. w
(i)
0 ← f0(x

(i)
0 )/q0(x

(i)
0 ).

3. For t = 1, . . . , T ,

3.1 Draw x
(i)
t from qt(Xt | x(i)

t−1).
3.2 Update weight

w
(i)
t ← w

(i)
t−1

ft(x
(i)
t | x

(i)
t−1)gt(yt | x

(i)
t )

qt(x
(i)
t | x

(i)
t−1)

.

3.3 Resampling (Optional):

▶ assign a priority score β
(i)
t to the sample x

(i)
t .

▶ Draw j1, . . . , jN i.i.d. from {1, 2, . . . , N} such that

P [jk = i] = β
(i)
t .

▶ relabel the samples

x
(i)
t ← x

(ji)
t .

▶ update weights

w
(i)
t ←

w
(ji)
t

β
(ji)
t

.

4. Return {(x(i)
T , w

(i)
T )}Ni=1.



SISR

Sequential Importance Sampling with Resampling (SISR) is a flexible framework where the
user decides

▶ the proposal function qt,

▶ the priority score βt,

▶ the resampling algorithm,

▶ the resampling schedule.

These factors are crucial for the performance of the Monte Carlo sample in estimation and
optimization.
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Strong Constraints

Information at time t:
It

Cumulative information/constraints up to time t:

C0 ⊃ C1 ⊃ · · · ⊃ CT ,

such that
Ct+1 = Ct ∩ It.

Strong constraints can affect the target distribution significantly.

G(t) = χ2 (p(Xt | Ct−1)||p(Xt | Ct)) = Varp(Xt|Ct−1)

[
p(Xt | Ct)

p(Xt | Ct−1)

]
Notation: t+ ⩾ t is the next time a strong constraint is imposed after time t.



SMC with Strong Constraints

▶ The perfect intermediate sampling distribution:

p̄t(Xt) := p(Xt | CT )

▶ The most efficient choice.
▶ Difficult to draw from p(Xt+1 |Xt, CT )

▶ The current intermediate sampling distribution of SMC:

p̃t(Xt) := p(Xt | Ct)

▶ Easy to sample sequentially.
▶ May miss the constraint IT in the future.

▶ We propose the following intermediate sampling distribution:

p+t (Xt) := p(Xt | Ct+)

▶ Consider potential future strong constraints.
▶ Consider only one future constraint.



SMC with Strong Constraints

To incorporate It+ , one can modify the SMC algorithm by

▶ Resampling method ✗

▶ Resampling schedule ✗

▶ Proposal distribution qt ✓

▶ Priority score βt ✓



SMC with Strong Constraints

Changing proposal distribution qt:

▶ Use linear interpolation qt to make the trajectories more likely to satisfy It+ .
▶ Easy to implement.

▶ Properly weighted.

▶ May break the underlying nature/shape/topology.

Changing priority score βt:

▶ Assign higher priority score to samples that are more likely to comply with It+ .
▶ Properly weighted.

▶ Keep the underlying nature/shape/topology.

▶ Need to calculate/approximate/evaluate the optimal priority score.



SMC with Strong Constraints

dvt = 0.2vtdt+ dwt

Ming Lin, Rong Chen, and Per Mykland. “On generating Monte Carlo samples of continuous diffusion bridges.”

Journal of the American Statistical Association 105.490 (2010): 820-838.



Optimal Priority Score

We observe that
p+t (Xt) ∝ p̃t(Xt)p(Ct+ |Xt, Ct)

If {(x(i)
t , w

(i)
t )}Ni=1 is properly weighted w.r.t. p̃t(Xt),

then {(x(i)
t , w

(i)
t p(Ct+ | x

(i)
t , Ct))}Ni=1 is properly weighted w.r.t. p+t (Xt).

▶ We run SIS using p̃t(Xt) as in the conventional SMC.

▶ The resampling step should be done w.r.t. p+t (Xt), that is, in the resampling step, we
use optimal priority score

β
(i)
t ∝ w

(i)
t p(Ct+ | x

(i)
t , Ct)

▶ Sequential Importance Sampling (under p̃t) with Resampling (under p+t )



Optimal Priority Score

SMC with constraints (SMCc):

Use priority score βt ∝ wtp(Ct+ |Xt, Ct)



Optimal Priority Score

p(Ct+ |Xt, Ct) ∝
∫
· · ·

∫ t+∏
s=t+1

p(Is | Xs)p(Xs |Xs−1)dXt+1:t+

Two pilot methods to estimate p(Ct+ |Xt, Ct):
1. Parametric Approximation

Use tractable parametric functions to approximate the integrand (e.g. multivariate
normal)

2. Forward Pilot.

3. Backward Pilot.



Forward Pilot

Suppose there is a low-dimensional summary statistics S(Xt) such that

p(Xt+1:t+d, Ct+d |Xt, Ct) = p(Xt+1:t+d, Ct+d | S(Xt), Ct)

Also, assume there is a function ϕ such that

S(Xt+1) = ϕ(S(Xt), Xt+1)

Then p(Ct+ |Xt, Ct) = p(Ct+ | S(Xt), Ct).
This can be estimated by a kernel estimation based on a forward pilot sample (without
resampling).



Forward Pilot

The forward pilot algorithm (part I): (for t1 < t ≤ t2)



Forward Pilot

We observe that

E

[
t2∏

s=t+1

ũ
(j)
t | S

(j)
t = S

]
= p(Ct2 | S(xt) = S, Ct)

A very rough kernel estimation would work.
The forward pilot algorithm (part II):



Backward Pilot

If the system is Markovian:

p(Xt, It |Xt−1, Ct−1) = p(Xt, It | Xt−1, Ct−1)

then the optimal priority score is

p(Ct+ | Xt, Ct) ∝
∫
· · ·

∫ t+∏
s=t+1

p(Is | Xs)p(Xs | Xs−1)dXt+1:t+

We may draw samples in a backward fashion from

p(Xt:t+) ∝
t+∏

s=t+1

p(Is | Xs)p(Xs | Xs−1)

And p(Ct+ | Xt, Ct) as a function of Xt is proportional to the marginal density of Xt.



Backward Pilot
The backward pilot algorithm contains (1) backward SIS (2) kernel estimation.
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Long-Run Marginal Expected Shortfall (LRMES)

▶ Let xf,t and xm,t be the daily log-price of the firm and the market, respectively.

▶ The long-run marginal expected shortfall (LRMES) is defined as

LRMES = E[1− exf,T−xf,0 | exm,T−xm,0 < 60%]

▶ The dynamics of (xf,t, xm,t) is assumed to follow the Glosten-Jagannathan-Runkle
generalized autoregressive conditional heteroskedasticity model (GJR-GARCH):[

xm,t

xf,t

]
=

[
xm,t−1

xf,t−1

]
+

[
σ2
m,t ρtσm,tσf,t

ρtσm,tσf,t σ2
f,t

]1/2 [
ϵm,t

ϵf,t

]
with σ2

m,t and σ2
f,t evolves over time as well.



Long-Run Marginal Expected Shortfall (LRMES)



Long-Run Marginal Expected Shortfall (LRMES)



Robot Control

▶ A two-arm robot system with a controllable torque at the joint.

▶ The status of the system is described by θ = (θ1, θ2, θ̇1, θ̇2)
′.

▶ The physical law governs the dynamic.

▶ κ ∼ Unif[−5, 5] generates the probability space.

▶ We generate θ0:T ∝ p(θ0:T | C)e−ατ with τ = min{t : ∥θt − θ∗∥∞ < 0.01}



Robot Control



Robot Control



Summary

Joint work with Ming Lin (Xiamen University) and Rong Chen (Rutgers University).

Paper:
Resampling Strategy in Sequential Monte Carlo for Constrained Sampling Problems.
Statistica Sinica. 34 (2024), 1-18.

A related work:
State Space Emulation and Annealed Sequential Monte Carlo for High Dimensional
Optimization. Statistica Sinica. To appear (2025).
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