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State-Space Model and Sequential Monte Carlo



Notations

t=0,1,...,7: Time index

X;, Y;: random variable at time ¢
¢, y¢: value of the random variables
KXot (X, Xig1yo00, Xs)

X Xo

p(+): the general probability notation
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State-Space Model (SSM)

Y1 Y2 th YT—l YT
QIT 921\ gtT 9T71T QTT
X, f1 X, f2 X, fs o f X, fear, fra Xr_y fr X

» Latent Variables: Xy, Xy,..., Xp.

p(Xo = x0) = fo(xo),
P(Xt =Tt | X1 = :l’tfl) = ft(l'O» .- ~,5Ut71,$t)

ft(l"t | mt—l)

» Independent Observations: Y7,Ys, ..., Yr.

p(Ye =y | Xe = 2¢) = 9e(w6,9e) = 9e(ye | 20)



State-Space Model

» The state-space model is a full probability model with the joint density

T
per,yr) = folzo) [] filwe | @e—1)ge(ye | 2)

t=1

» Likelihood estimation problem:
Compute p(yr; 0)

» Most likely path (MLP) problem:

argmax p(xr | yr)
xT

» Sampling problem:
draw 1 ~ p(xT | yr)



Sampling from a State-Space Model

» Sequential Monte Carlo (SMC) is a set of methods of sampling from the state-space
models.

» The key step is based on the following recursive importance sampling step:
> if {(mgi), wi“) N | is a properly weighted sample for

t

p(Xe | ye) o< fo(Xo) [T fo(Xe | Xom1)gs(ys | Xo)

s=1
> draw 5”7521 from the proposal distribution gs4+1(X¢41 | @)
> et

s = (@), 2)y)

w0 o Frr (@ 12l ger (e | 237)
t+1 t i i
g (2, | 2f”)

> then {(mgﬁl, wﬁgl) N | is a properly weighted sample for

41
P(Xit1 | Yeg1) x fo(Xo) H fs(Xs | Xs—1)gs(ys | Xs)

s=1



Sequential Importance Sampling (SIS)

1. Draw mgi) iid. from go(Xp).
2wy folay”)/ao ().
3. Fort = 1,...,T,

3.1 Draw z, ) from qe (X | ac )
3.2 Update weight

0 (0 T >|wt 1>gt<yt|x§”>.

Wy
qe(z o | mtfl)

4. Return {(a:T ,w(TZ)) ie1-



Sequential Importance Sampling (SIS)

The choice of ¢; is arbitrary.

» bootstrap particle filter:
q (X | Xio1) = fio(Xe | Xi1)
» independent particle filter:
qr( Xy | Xi—1) o< ge(ye | Xi)

» conditional optimal:

Qt(Xt | thl) o8 ft(Xt | thl)gt(yt | Xt)

Major drawback: weight collapse.
» A small number of samples posses the majority of the weights.
» Small ESS. Large variance.

» Solution: resampling.



Resampling

1. At time t, assign a priority score Bgi) to the sample wgi).
2. Draw j1,...,jn i.i.d. from {1,2,..., N} such that
Pljv =i = 8.

3. relabel the samples

zgi) — miji).
4. update weights
) (4s)
wf? - U

(J¢)
t



Resampling

» The choice of priority score f; is arbitrary.

» Conventional choice: B o< wy
> Auxiliary particle filter: 8 o« p(ye+1 | X¢)
» Delayed particle filter: 3; < p(yi+a | Xt)

» Resampling algorithms:
» Multinomial, residual, stratified, etc..

» Resampling schedule:

» Fixed schedule: Do resampling at t = 4, 26, 36, . . ..
> Adaptive schedule: Do resampling when ESS < 0.3N.

(S0’

Effective Sample Size(ESS) = ———— %5
Y ( ) ZZ]\;1 (w(i))z

» Drawback: degeneracy.



Sequential Importance Sampling with Resampling

1. Draw a:gi) iid. from go(Xp).

2. wy)  folal))/ao(=).
3. Fort=1,...,T,

3.1 Draw wgi) from q: (X | wgl_)l)
3.2 Update weight

D Fe@? | &) ge(ye | 2)
t—1 .
qt(xg Y | :Btfl)

3.3 Resampling (Optional):
(2)

> assign a priority score Bt(i) to the sample x;
» Draw ji,...,jn i.i.d. from {1,2,..., N} such that

Pljx =i = B".

> relabel the samples

:ci” — azEj”.
» update weights ( )
Ji
(2)
e G
t

4. Return {(a:gf),wéf)) iy



SISR

Sequential Importance Sampling with Resampling (SISR) is a flexible framework where the
user decides

» the proposal function g,
» the priority score [,

» the resampling algorithm,
» the resampling schedule.

These factors are crucial for the performance of the Monte Carlo sample in estimation and
optimization.



Constrained Sequential Monte Carlo and Pilot Methods



Strong Constraints

Information at time ¢:
Z

Cumulative information/constraints up to time ¢:
CoD>C D DCr,

such that
Ct+]_ = Ct N It-

Strong constraints can affect the target distribution significantly.

G(t) = X2 (p(Xt | Ct—1)||p(Xt | Ct)) = Varp(Xt|Ct71) |: p(Xt | Ct) :|

P(Xt | thl)

Notation: ¢4 >t is the next time a strong constraint is imposed after time ¢.



SMC with Strong Constraints

» The perfect intermediate sampling distribution:

pe(Xt) == p(X¢ | Cr)

» The most efficient choice.
» Difficult to draw from p(X¢+1 | X¢,Cr)

» The current intermediate sampling distribution of SMC:

pe(Xt) == p(X¢ [ C)

> Easy to sample sequentially.
» May miss the constraint Zp in the future.

» We propose the following intermediate sampling distribution:

P (Xy) == p(Xy | Ci)

» Consider potential future strong constraints.
» Consider only one future constraint.



SMC with Strong Constraints

To incorporate Z; , one can modify the SMC algorithm by
» Resampling method X
» Resampling schedule X
» Proposal distribution ¢; v/
» Priority score £; v/



SMC with Strong Constraints

Changing proposal distribution ¢;:
» Use linear interpolation ¢; to make the trajectories more likely to satisfy Z; .
> Easy to implement.
» Properly weighted.
» May break the underlying nature/shape/topology.

Changing priority score [;:
» Assign higher priority score to samples that are more likely to comply with 7, .
» Properly weighted.
» Keep the underlying nature/shape/topology.

> Need to calculate/approximate/evaluate the optimal priority score.



SMC with Strong Constraints

dUt = 02Utdt + dwt

35 35
— "Pefect" sampling distribution | | — ing distribution of SMC-0
30

Ming Lin, Rong Chen, and Per Mykland. “On generating Monte Carlo samples of continuous diffusion bridges.”
Journal of the American Statistical Association 105.490 (2010): 820-838.



Optimal Priority Score

We observe that
P (Xe) o pe(Xo)p(Ce, | X4, Cr)

If {(mt ,wt )}N 1 is properly weighted w.r.t. p(Xy),
then {(a:t ,wt p(Ct+ | ),Ct)) ¥, is properly weighted w.r.t. p;(X;).

» We run SIS using p:(X;) as in the conventional SMC.

» The resampling step should be done w.r.t. p;”(X;), that is, in the resampling step, we
use optimal priority score

ﬁ( ? X wt P(Cm, ‘ wt act)

» Sequential Importance Sampling (under p;) with Resampling (under p;")



Optimal Priority Score
SMC with constraints (SMCc):

Use priority score 5y oc wp(Cy, | X4, Ct)

time



Optimal Priority Score

i+
p(Ce, \Xt,ct)o(/.../ [1 »(T | Xp(X, | Xoo1)dXosra,
s=t+1

Two pilot methods to estimate p(Cy, | X¢,Cy):

1. Parametric Approximation
Use tractable parametric functions to approximate the integrand (e.g. multivariate
normal)

2. Forward Pilot.

3. Backward Pilot.



Forward Pilot

Suppose there is a low-dimensional summary statistics S(X;) such that
P(Xestit4d, Ceqa | Xe,Ct) = p(Xiq1i4d; Crra | S(Xe),Cr)
Also, assume there is a function ¢ such that
S(Xi41) = 9(5(X3), Xiya)

Then p(ctJr | Xt, Ct) = p(Ct+ ‘ S(Xt), Ct)
This can be estimated by a kernel estimation based on a forward pilot sample (without
resampling).



Forward Pilot

The forward pilot algorithm (part I): (for ¢; <t < t5)

e Initialization: For j = 1,...,m, draw samples §§f ) from a proposal distribution
©(S) that covers the support of S(zg., ).

e Fort=1¢, +1,...,ty, draw pilot samples forwardly as follows.

— Generate samples Z.’) from a proposal distribution o(T¢ | §t(i )1), and calculate
gt(J) = ¢(§§J_)1,?E£])) forj=1,...,m.

— Calculate the incremental weights

) _ p(E,Co|S@G)_1) = 57, Cin)
o@” 15)

ay



Forward Pilot

We observe that .
2

IT @ (s = S] = p(Cs, | S(m) = 5,C)

s=t+1

E

A very rough kernel estimation would work.
The forward pilot algorithm (part II):

e Fort=1ty—1,to—2,...,t1 +1:

— Compute Ut(j) = H?:Hl a9 for i=1,...,m.
— Let S U--- USp be a partition of the support of S(zo.). Estimate
p(Ct, | 204, Cr) = p(Cy, |S(x0:t), Cy) by

ft(S(zos)) = Z’Yt,d]I(S(xo;t) € 84) (3.3)

with va = Y7, UPISY € 8a)/3 1 IS € Sg), where I(-) is the
indicator function.



Backward Pilot

If the system is Markovian:
p(Xe, Ty | Xi—1,Cr—1) = p( X4, Ty | Xy—1,Ci-1)
then the optimal priority score is
Ly
(Ct+ | X¢,Ct) / / H P(Zs | Xo)p(Xs | X 1)dXt+1t+
s=t+1
We may draw samples in a backward fashion from
p(Xipt,) HpI|X (X, | Xo_1)
s=t+1

And p(Cy, | Xy,Ct) as a function of X; is proportional to the marginal density of X.



Backward Pilot

The backward pilot algorithm contains (1) backward SIS (2) kernel estimation.

e Initialization: For j = 1,...,m, draw samples E(j ) from a proposal distribution

r(z¢,) approximately proportlonal to p(I, | z+,) and set w N(J) = l/r(N(]))

e Fort =1ty —1,...,t; + 1, draw pilot samples backward as follows.

~(7)

— Generate samples 7;”’, j = 1,...,m, from a proposal distribution r(Z | EEQI)

— Update weights by

2 = g p(EZ, L1 |Y))
=0T G~
(T} |93t+1)

, J=1...,m.

— Let X1U- - -UXp be a partition of the support of ;. Estimate p(Cy, | 2o, Ct) =

P(It+1 ity | It) by
D

Flxe) = meal(ze € Xa), (4.1)

d=1

where n;,q = (1/m|Xq]) 3272, w,g])]l(act]) € X,), and |Xy| denotes the volume
of the subset X,.



EXampleS
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Long-Run Marginal Expected Shortfall (LRMES)

» Let x¢, and x,,; be the daily log-price of the firm and the market, respectively.
» The long-run marginal expected shortfall (LRMES) is defined as

LRMES = E[1 — ¢/ 77210 | ¢@m %m0 < 60%]

» The dynamics of (¢, Zm,:) is assumed to follow the Glosten-Jagannathan-Runkle
generalized autoregressive conditional heteroskedasticity model (GJR-GARCH):

9 1/2
Tm,t| _ [Tm,t—1 + Ot PtOm O f ¢ €m,t
Lt Lft—1 PtOm t0 f.t szf,t €fit

with a?mt and J]% , evolves over time as well.
'



Long-Run Marginal Expected Shortfall (LRMES)
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Long-Run Marginal Expected Shortfall (LRMES)
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Figure 2. Sample paths of X, o7 generated by different methods before weight
adjustment. The horizontal line denotes a 40% price decrease.



Robot Control

02

Figure 5. Acrobot with two arms (left panel), starting position 8y at (0,7/2,0,0) (middle
panel), and target position 6, at (0,—7/2,0,0) (right panel) .

A two-arm robot system with a controllable torque at the joint.

The status of the system is described by 6 = (61, 02, 6, 92)’.

The physical law governs the dynamic.

k ~ Unif[—5, 5] generates the probability space.

We generate 0p.r x p(0p.r | C)e™ " with 7 = min{¢ : |6; — .|| < 0.01}

vvyVvyyvyy



Robot Control
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Figure 6. Left panel: Sample paths generated using the SMCc-BP method (in gray), with
the “optimal” path (in black) that reaches the target state 6. at t = 68. The control
sequence for the “optimal” path is shown in the top panel. Right panel: Sample paths
generated using the random search method for t = 0,1,...,68.



Robot Control
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Summary

Joint work with Ming Lin (Xiamen University) and Rong Chen (Rutgers University).

Paper:
Resampling Strategy in Sequential Monte Carlo for Constrained Sampling Problems.
Statistica Sinica. 34 (2024), 1-18.

A related work:
State Space Emulation and Annealed Sequential Monte Carlo for High Dimensional
Optimization. Statistica Sinica. To appear (2025).
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